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Influence of disorder on DNA denaturation:
the disordered generalized Poland-Scheraga model

Alexandre Legrand*

Abstract

The Poland-Scheraga model is a celebrated model for the denaturation transition of
DNA, which has been widely used in the bio-physical literature to study, and inves-
tigated by mathematicians. In the original model, only opposite bases of the two
strands can be paired together, but a generalized version of this model has recently
been introduced, and allows for mismatches in the pairing of the two strands, and
for different strand lengths. This generalized Poland-Scheraga (gPS) model has only
been studied recently in the case of homogeneous interactions, then with disordered
interactions perturbed by an i.i.d. field. The present paper considers a disordered
version of the gPS model which is more appropriate to depict the inhomogeneous
composition of the two strands (in particular interactions are perturbed in a strongly
dependent manner): we study the question of the influence of disorder on the denat-
uration transition, and our main results provide criteria for disorder (ir)-relevance,
both in terms of critical points and of order of the phase transition. Surprisingly, we
find that criteria for disorder relevance depend on the law of the disorder field. We
discuss this with regards to Harris’ prediction for disordered systems.
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1 Introduction

The Poland-Scheraga (PS) model has been introduced in [32] to formally study
the DNA denaturation phenomenon, that is the unbinding of two strands of DNA as
temperature increases. It has proven to be relevant from a quantitative point of view (see
e.g. [9, 10]) and has been subject to much interest from the mathematical, physical and
biophysical communities (see e.g. [18, 21, 28, 29]). In the homogeneous version of the
model, i.e. when bases in each strand are all the same (for instance AAA. . . and TTT. . .),
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The disordered gPS model for DNA denaturation

an interesting feature is that the model is solvable: it is proven to undergo a denaturation
(or delocalization) phase transition, and its critical behavior can be described precisely,
cf. [21, Ch. 2].

In the PS model, it is assumed that the two strands are of equal length, and that only
bases from each strand with the same index can be paired. To depict DNA denaturation
more accurately, the generalized Poland-Scheraga (gPS) model has been introduced more
recently, where those assumptions are relaxed, see [19, 20, 31]. From the mathematical
point of view, the gPS model can be described as a pinning model based on a two-
dimensional renewal process, see [24]. Interestingly, the homogeneous version of the
model remains solvable, despite having a much more complex behavior — in particular it
has (in general) other critical points, corresponding to “condensation” phase transitions,
see [24] and [4].

The PS and gPS models can naturally embody the inhomogeneous character of DNA.
In the PS model, one introduces a sequence of random variables — referred to as
disorder in statistical mechanics — describing the inhomogeneous binding energies of
successive pairs. A disordered version of the gPS model has been studied recently in [5],
with the introduction of a two-dimensional disorder field: the random variable of index
(i, j) ∈ N2 corresponds to the binding energy of the i-th base of the first strand with the
j-th base of the second strand. In [5], the authors chose the disorder field to be i.i.d.: this
assumption is relevant when using the gPS model to portray the pinning of a polymer on
a inhomogeneous surface, or a directed (stretched) polymer in a random environment
(in the spirit of [13, 35]). However this choice is not satisfactory when describing the
denaturation phenomenon between two inhomogeneous chains: the binding energy of a
pair (i, j) should be a function of the i-th and j-th bases of each strand — in particular
the binding energies of two pairs (i, j) and (i, k) are not independent because they share
a common base.

The purpose of this paper is twofold:

• study the gPS model in a setting which portrays more faithfully the pinning of two
inhomogeneous polymers, as in DNA denaturation;

• make progress on the understanding of disordered systems when disorder/random-
ness is slightly elaborate, in particular not i.i.d.
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(a) Poland-Scheraga.
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(b) Generalized Poland-Scheraga.

Figure 1: Representations of the PS and gPS models. In the first figure, the two strands
are of length 13 and are bounded symmetrically, on pairs 1, 2, 4, 5, 6, 10 and 11. In the
other one, the two strands are of different lengths and are bound on pairs (1, 1), (2, 2),
(6, 4), (7, 6), (8, 7) and (12, 9).
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Some notation In the remainder of the paper, bold characters n, i , j , . . . will denote
elements of N2 (or Z2), and plain characters elements of N or R. In particular we denote
1 := (1, 1), 0 := (0, 0). For r ∈ {1, 2}, the projection of any element n ∈ N2 on its r-th
coordinate will be denoted n(r) ∈ N.

1.1 The generalized Poland-Scheraga model

Let τ = (τ i)i≥0 be a bivariate renewal process: τ 0 = (0, 0), and (τ i−τ i−1)i≥1 are i.i.d.,
N2-valued random variables. We denote P its law, and we assume that the inter-arrival
distribution satisfies for all a, b ∈ N,

P(τ 1 = (a, b)) = K(a+ b) :=
L(a+ b)

(a+ b)2+α
, (1.1)

where α > 0, and L(·) is a slowly varying function (that is L(ux)/L(x)→ 1 as x→∞ for
any u > 0, see [8]). We also assume that τ is persistent, i.e.

∑
n,m≥1K(n+m) = 1. With

a slight abuse of notation, we write τ := {τ 0, τ 1, τ 2, . . .} ⊂ N2 the set of renewal points,

and from now on we will omit the point τ 0 = (0, 0). Notice that τ (r) := {τ (r)
1 , τ

(r)
2 , . . .} is

a univariate renewal process with inter-arrival distribution P(τ
(r)
1 = a) = L̃(a)a−(1+α),

with L̃(n) ∼ (1 + α)−1L(n) some slowly varying function.
Let ω = (ωi )i∈N2 be a field of real random variables indexed in N2, whose law is

denoted P (ω(i,j) represents the binding potential between the i-th and j-th bases of the
first and second strand respectively). We assume that they all have the same law, and
that there exists some β0 ∈ (0,∞] such that for all β ∈ [0, β0),

λ(β) := logE[eβω1 ] <∞ , (1.2)

(this is satisfied by bounded laws and by many unbounded laws, notably Gaussian or the
product of two independent Gaussian variables).

For a fixed realization of ω (quenched disorder), we define, for β ∈ [0, β0) (the disorder
strength) and h ∈ R (the pinning potential), the following polymer (Gibbs) measure: for
any renewal set τ ⊂ N2 and n = (n(1),n(2)) ∈ N2,

dPβ,ω,qn,h

dP
(τ ) :=

1

Zβ,ω,qn,h

exp

( ∑
i∈J1,nK

(
βωi − λ(β) + h

)
1{i∈τ}

)
1{n∈τ} , (1.3)

where Zβ,ω,qn,h is the partition function with quenched disorder,

Zβ,ω,qn,h := E

[
exp

( ∑
i∈J1,nK

(
βωi − λ(β) + h

)
1{i∈τ}

)
1{n∈τ}

]
, (1.4)

and J1,nK denotes J1,n(1)K× J1,n(2)K ⊂ N2. This represents the binding of two strands
with respective lengths n(1) and n(2), and i ∈ τ if and only if the base i (1) of the first
strand is paired with the base i (2) of the second strand. The polymers are constrained to
be bound on the last pair n, and we give a reward (or a penalty if negative) βωi −λ(β)+h

for each bound pair i ∈ τ . Notice that the term −λ(β) in the reward is present only for
renormalization purposes, see for instance (1.11) below. From now on, we will drop the
superscript ω in the quenched partition function and Gibbs measure to lighten notations,
even though they are functions of ω.

Let us now precise our choice of disorder field. In [5], the authors studied the gPS
model under an i.i.d. disorder field ω = (ωi )i∈N2 . In this paper we want the disorder field
to depict the inhomogeneous composition of the two strands: we pick two independent
sequences ω̂ = (ω̂i1)i1∈N and ω̄ = (ω̄i2)i2∈N of i.i.d. random variables, whose distributions
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are denoted P̂ and P̄ respectively. These random variables are thought as being charges
attached to the two strands. For each i ∈ N2, we fix

ωi := f(ω̂i(1) , ω̄i(2)) , (1.5)

where f(·, ·) is a function describing the interactions between the monomers. We will
write P := P̂⊗ P̄ with an abuse of notation. We stress right away that ω := (ωi )i∈N2 is a
strongly correlated field, but that ωi and ωj are independent as soon as i , j ∈ N2 are not
aligned, i.e. are not on the same line or column: i (1) 6= j (1) and i (2) 6= j (2).

1.2 The free energy and the denaturation transition

A physical quantity central to the study of the model is the free energy, defined in the
following proposition.

Proposition 1.1 (Free energy). For all γ > 0, h ∈ R, β ≥ 0 and every sequence
{m(n)}n=1,2,... such that limn→∞m(n)/n = γ, the following limit exists:

lim
n→∞

1

n
logZβ,qn,h = lim

n→∞

1

n
E logZβ,qn,h =: Fγ(β, h) , (1.6)

where n := (n,m(n)), both P(dω)-almost surely and in L1(P). Also, (β, h) 7→ Fγ(β, h +

λ(β)) is non-negative and convex (therefore continuous on (0,∞) × R), h 7→ Fγ(β, h)

and β 7→ Fγ(β, h + λ(β)) are non-decreasing, and γ 7→ Fγ(β, h) is non-decreasing and
continuous. Moreover, we have, for any 0 < γ1 ≤ γ2,

Fγ1(β, h) ≤ Fγ2(β, h) ≤ γ2

γ1
Fγ1(β, h) . (1.7)

This proposition is analogous to [5, Thm. 1.1 and Prop 2.1]: the proof of these results
is not affected by our choice of (correlated) disorder in any way whatsoever, because any
trajectory of τ contributing to Zβ,qn,h only involves an i.i.d. subfamily of the field ω: indeed,
if i , j ∈ τ and i 6= j , then necessarily they are not aligned because the inter-arrivals of τ
are in N2, hence ωi and ωj are independent. Therefore the proof of Proposition 1.1 is an
immediate replica of that of [5, Thm. 1.1 and Prop 2.1].

Proposition 1.1 allows us to define the (quenched) critical point :

hq
c(β) = hc(β) := inf{h : Fγ(β, h) > 0} . (1.8)

We stress that hc(β) does not depend on γ > 0, thanks to (1.7).
The critical point hc(β) marks the transition between a localized and a delocalized

phase: this is the so-called denaturation (or (de)-localization) transition. Indeed, a
standard calculation gives that ∂h logZβ,qn,h = Eβ,qn,h

[∑
i∈J1,nK 1{i∈τ}

]
: by exploiting the

convexity of the free energy and Proposition 1.1, we get that

∂hFγ(β, h) = lim
n→+∞,
m(n)/n→γ

Eβ,qn,h

[ 1

n

∑
i∈J1,nK

1{i∈τ}

]
, (1.9)

whenever ∂hFγ(β, h) exists. Therefore, for h > hc(β) we have ∂hFγ(β, h) > 0, and in view
of (1.9), there is a positive density of contacts between the two strands: they stick to
each other. On the other hand, for h < hc(β) we have ∂hFγ(β, h) = 0, and there is a zero
density of contacts: the two strands wander away from one another.

1.3 The homogeneous and annealed models

The homogeneous model corresponds to the case when there is no disorder, i.e. β = 0.
This model has been proven to be exactly solvable, and a fine analysis of Fγ(0, h) has
been performed in [24].
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Theorem 1.2 (Thm. 1.2 in [24]). For any γ ≥ 1, hc(0) := inf{h : Fγ(0, h) > 0} = 0.
Moreover there are a slowly varying function Lα(·) and a constant cα,γ such that

Fγ(0, h) ∼ cα,γLα(1/h)h1/min(1,α) , as h↘ 0 . (1.10)

The exponent 1/min(1, α) is often referred to as the critical exponent : it is the
main quantification of the behavior of the model around its phase transition. Explicit
expressions of Lα are given in [24], in particular it is some constant if α > 1.

The annealed model, on the other hand, corresponds to averaging the partition
function over the disorder: the annealed partition function is, for β ∈ [0, β0),

Zβ,an,h := E
[
Zβ,qn,h

]
= EE

[
exp

( ∑
i∈J1,nK

(
βωi − λ(β) + h

)
1{i∈τ}

)
1{n∈τ}

]
= E

[
exp

( ∑
i∈J1,nK

h1{i∈τ}

)
1{n∈τ}

]
= Z0,q

n,h . (1.11)

Here we used that for any fixed trajectory of τ the non-zero terms (βωi −λ(β) +h)1{i∈τ}
are independent and that λ(β) = logE[eβω1 ] < +∞ for β ∈ [0, β0) (in particular this
implies Zβ,qn,h ∈ L1(P)).

Notice that the annealead model matches exactly the homogeneous model. Recalling
Proposition 1.1, the annealed free energy is therefore

Fa
γ(β, h) := lim

n→∞,
m(n)/n→γ

1

n
logZβ,an,h = Fγ(0, h) . (1.12)

We also directly have that the annealed critical point is ha
c(β) := min{h : Fa

γ(β, h) > 0} =

0 (recall Theorem 1.2).
Now, a simple use of Jensen’s inequality in (1.6) gives that Fγ(β, h) ≤ Fa

γ(β, h). More-
over, we have that Fγ(0, h) ≤ Fγ(β, h + λ(β)) (recall that β 7→ Fγ(β, h + λ(β)) is non-
decreasing). As a conclusion, we obtain the following bounds for the quenched critical
point: for every β we have

0 = ha
c(β) ≤ hc(β) ≤ hc(0) + λ(β) = λ(β) . (1.13)

An adaptation of the proof of [21, Th. 5.2] would easily give that the second inequality
is strict for every β > 0. The first inequality may or may not be strict and this is an
important issue which is directly linked to disorder relevance or irrelevance.

In the rest of the paper, we will work in the case γ = 1: recall that having γ 6= 1

changes neither the value of the critical point hc(β), nor the homogeneous critical
behavior (up to a constant factor, see inequality (1.7) and Theorem 1.2). To simplify
notations, we will drop the dependence on γ in the free energy.

2 Presentation of the results: the question of disorder relevance

In general, going from a homogeneous model to a disordered one is a complex matter
in statistical mechanics (even in the PS model, see [21, Ch. 5]). A first issue is wether the
phase transition — in this paper we focus on the denaturation transition — remains when
we introduce a small disorder; if so, at what critical value and with what critical behavior
compared to the homogeneous model. If any disorder with any strength — parametrized
by β in our setting — changes the critical behavior (notably the critical exponent) of the
model from the homogeneous case, disorder is said to be relevant ; if a disorder of small
strength does not change the critical behavior, it is said to be irrelevant.

The physicist Harris [27] predicts that disorder (ir)-relevance for a d-dimensional
system can be determined from the correlation length exponent ν in the homogeneous
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model. If we admit that the correlation length is given by the reciprocal of the free energy,
we obtain from Theorem 1.2 that ν = 1/min(1, α). Then Harris’ criterion predicts that
when ν > 2/d disorder should be irrelevant, and when ν < 2/d it should be relevant (the
case ν = 2/d, dubbed marginal, is much harder to treat, even with heuristic methods).

Notice that in our setting, determining the dimension d of the system is a more
delicate issue than it seems: even though the disorder field ω is indexed in N2, it is
constructed from two sequences ω̂ and ω̄, therefore has a 1-dimensional degree of
freedom. It is not obvious if one should pick d = 1 or d = 2 in Harris’ criterion. Actually
we prove that there are two possible criteria for disorder (ir)-relevance depending on
the law P, which correspond to Harris’ prediction for each value d ∈ {1, 2}. We prove
disorder irrelevance (same critical point and exponent), and disorder relevance (shift of
the critical point and smoothing of the phase transition) for small disorder intensity in
both cases.

We will study disorder (ir)-relevance in the case of ω̂ and ω̄ having the same distribu-
tion P̂ = P̄, and with a product interaction function f(·, ·):

ωi := f(ω̂i(1) , ω̄i(2)) = ω̂i(1) × ω̄i(2) . (2.1)

We assume that ω̂1, ω̄1 are not constant a.s. (otherwise the model is homogeneous).
The condition that E[eβω1 ] is finite for β < β0 can be guaranteed simply by asking that
E[e

1
2βω̂

2
1 ] < +∞ for β < β0, using that xy ≤ (x2 + y2)/2. This is verified for example when

ω̂, ω̄ are sequences of Gaussian variables, or when ω̂, ω̄ are bounded. Let us denote the
moments of ω̂1 by mk := E[ω̂k1 ] = E[ω̄k1 ] for all k ∈ N. In particular E[ωk1] = m2

k for all
k ∈ N.

2.1 Main results I: disorder irrelevance

Our first result is the following theorem, showing disorder irrelevance for α < 1/2,
regardless of the law P.

Theorem 2.1 (Irrelevance of disorder). Let τ and τ ′ be two independent copies of a
renewal process with law P. If τ (1) ∩ τ ′ (1) (or equivalently τ (2) ∩ τ ′ (2)) is terminating (in
particular if α < 1/2), then there exists β1 > 0 such that for every β ∈ [0, β1), one has: (i)
hc(β) = ha

c(β) = 0; (ii) for any h ∈ [0, 1],

L1(1/h)h1/α ≤ F(β, h) ≤ Lα(1/h)h1/α , (2.2)

for some (explicit) slowly varying functions L1, Lα.

Recall that τ (1) is a univariate renewal process such that P(τ (1) = a) = L̃(a)a−(1+α),
where L̃ ∼ (1 + α)−1L. Proposition B.4 gives a necessary and sufficient condition for
τ (1) ∩ τ ′ (1) to be terminating — in particular Theorem 2.1 holds for α < 1/2. The upper
bound in (2.2) is a direct consequence of Jensen’s inequality, (1.12) and Theorem 1.2:
so the interesting features are (i) and the lower bound in (2.2). This result implies that,
provided that β is small enough, the quenched critical point and the quenched critical
exponent are the same as those given by Theorem 1.2 for the homogeneous and annealed
models — which means that disorder is irrelevant.

When α > 1/2, we will state below that disorder is relevant for almost all disorder
laws. Indeed, let us define for any x > 0 the distribution

P±x(ω̂1 = x) = P±x(ω̂1 = −x) = 1/2 , (2.3)

(and ω̄1 has same law). Note that this family of distributions (P±x)x>0 is characterized
by the identities E±x[ω̂1] = m1 = 0, and Var±x(ω̂2

1) = m4 −m2
2 = 0 — that is ω̂2

1 = x2 a.s..
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Theorem 2.2 (Irrelevance of disorder for distributions P±x). Assume that P = P±x for
some x > 0. Then the results of Theorem 2.1 hold as soon as τ ∩ τ ′ is terminating (in
particular if α < 1). That is, there exists β1 > 0 such that for every β ∈ [0, β1), one has (i)
hc(β) = 0; (ii) (2.2) holds.

The fact that α < 1 is a sufficient condition for having τ ∩ τ ′ terminating (while α ≤ 1

is necessary) is ensured by Proposition B.4 below. In particular, Theorem 2.2 shows that
disorder with distribution P±x is irrelevant for all α ∈ (0, 1).

2.2 Main results II: disorder relevance

In the two previous theorems, we stated that if P 6= P±x for all x > 0, disorder is
irrelevant when α < 1/2; and if P = P±x for some x > 0, it is irrelevant when α < 1. We
now prove disorder relevance in each case for α > 1/2 and α > 1 respectively.

We first focus on the shift of the critical point, starting with the case P 6= P±x.

Theorem 2.3 (Shift of the critical point, lower bound). Assume α > 1/2 and P 6= P±x
for all x > 0. Then for any fixed ε > 0 (small), there exists βε > 0 such that for every
β ∈ (0, βε), one has

hc(β) ≥

{
βmax( 2α

2α−1 ,2) + ε if m1 6= 0,

βmax( 4α
2α−1 ,4) + ε if m1 = 0, m4 > m2

2.
(2.4)

In particular hc(β) > ha
c(β) = 0 for all β ∈ (0, βε).

Notice that all (non-constant) distributions other than P±x, x > 0 are covered by the
assumptions m1 6= 0 or m4 > m2

2. To complete this result, we provide an upper bound
on hc(β).

Proposition 2.4 (Shift of the critical point, upper bound). Assume α > 1/2 and P 6= P±x
for all x > 0. Then there exist β1 > 0 and some slowly varying function L2, such that for
any β ∈ [0, β1),

hc(β) ≤ L2(1/β)βmax( 2α
2α−1 ,2) . (2.5)

Let us stress that this upper bound (almost) matches the lower bound found in
Theorem 2.3 when m1 6= 0; however it is not satisfactory when m1 = 0. We will discuss in
Section 3.3 why we strongly believe that this upper bound can be improved to (almost)
match the lower bound when m1 = 0, see Remark 3.5 below — actually, when ω̂, ω̄ are
two sequences of i.i.d., centered Gaussian variables, computations of Section 3.2 can be
carried out exactly and give an upper bound on the shift of order L2(1/β)βmax( 4α

2α−1 ,4),
which (almost) matches the lower bound from Theorem 2.3.

When m1 = 0, m4 = m2
2 — that is P = P±x for some x > 0 — and α > 1, we prove

(almost) optimal bounds on the critical point shift.

Theorem 2.5 (Shift for distributions P±x). Assume P = P±x for some x > 0, and α > 1.
Then for every ε > 0, there exist βε > 0 such that for any β ∈ [0, βε),

βmax( 2α
α−1 ,4)+ε ≤ hc(β) ≤ L3(1/β)βmax( 2α

α−1 ,4) , (2.6)

with L3 a slowly varying function. In particular hc(β) > 0 for all β ∈ (0, βε).

This fully covers the shift of the critical point for all disorder laws (except for the
marginal cases: α = 1/2 when P 6= P±x and α = 1 when P = P±x; we will discuss them
at the end of this section).

With regards to the critical exponent, in the case P 6= P±x and α > 1/2 we prove
that the phase transition is smoother in the disordered model than in the homogeneous
one. This smoothing phenomenon has been first highlighted for the disordered pinning
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model by [26], and our proof follows the same lines. Unfortunately we could not prove a
smoothing phenomena in the case P = P±x — this will be further discussed in Section 2.3.

As in [26] we need an additional assumption on the disorder law P (mostly for
technical reasons).

Assumption 2.6. Let P̃δ denote the law of (1 + δ)ω̂1 for any δ ∈ R. There are c > 0 and
δ0 > 0 such that for all δ ∈ (−δ0, δ0),

H(P̃δ|P) := Ẽδ

[
log

dP̃δ
dP

]
≤ c δ2 , (2.7)

(Recall that H(P̃δ|P) is well-defined as soon as dP̃δ
dP exists, and it is non-negative).

Of course we make the same assumption regarding ω̄ (we assumed P̂ = P̄). Notice
that Assumption 2.6 is verified when ω̂, ω̄ are Gaussian sequences, and for many un-
bounded laws; however it does not hold for bounded disorder, in particular it does not
hold for P±x.

Theorem 2.7 (Smoothing of the phase transition). Suppose that Assumption 2.6 holds
for P (in particular P 6= P±x for all x > 0). Then for any β ∈ (0, β0), there are constants
cβ and tβ > 0 such that for any t ∈ (0, tβ), one has

F(β, hc(β) + t) ≤ cβ t
2 . (2.8)

When α > 1/2, Theorem 2.7 shows that disorder has a smoothing effect on the
phase transition. Indeed Theorem 1.2 claims that that the homogeneous model has a
critical exponent 1/min(1, α), which is stricly smaller than 2 if α > 1/2. Notice also that
Theorem 2.7 is not restricted to small values of β (as opposed to other results in this
paper).

2.3 Some comments on the results and the techniques of the proofs

Criteria for disorder (ir)-relevance: dependence on P

An interesting feature of our setting is that, unlike the PS model or gPS with i.i.d.
disorder, criteria on P for disorder (ir)-relevance are not the same for all disorder
distributions P. We may foresee this peculiarity by looking at the correlation between
rewards given by two different indices, that is E[eβ(ωi+ωj )]− E[eβωi ]E[eβωj ], i , j ∈ N2 (in
particular those correlations appear in the proof of Theorems 2.1 and 2.2 in Section 3.2,
when computing the second moment of the partition function). It is obviously 0 if i , j are
on different lines and columns, and it is greater than 0 if i = j . However if i 6= j are on
the same line or column (that is i (1) = j (1) or i (2) = j (2)) then this correlation is 0 if and
only if P = P±x for some x > 0 — otherwise it is positive for β small (this follows from a
Taylor expansion).

Therefore, when P 6= P±x for all x > 0, the field (eβωi )i∈N2 of rewards given by the
disorder has strong correlations on each line and column, and the criteria for disorder
(ir)-relevance in that case correspond to Harris’ prediction for one-dimensional systems,
i.e. the marginal regime is at the value α = 1/2. Whereas when P = P±x for some x > 0,
that field is much less correlated (all its two-point correlations are 0), and it matches
Harris’ prediction for two-dimensional systems, i.e. the marginal regime is at α = 1.

Comparison with the existing literature and other models

Let us compare our results to [5], where the authors studied the gPS model with an
i.i.d. disorder field (ωi )i∈N2 . In this setting, they prove that disorder is irrelevant as soon

as τ ∩ τ ′ terminates, and that the critical point is shifted for all α > 1 by βmax( 2α
α−1 ,4)+ε.
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Those results are the same as our Theorems 2.2 and 2.5. This supports the idea that
in our setting, when P = P±x for some x > 0, the field (eβωi )i∈N2 is poorly correlated
(even though it is not i.i.d.) and has the same influence on the system as an i.i.d. field.
However, when disorder has another distribution, the field becomes highly correlated
and the comparison with i.i.d. disorder falls appart — in particular the criteria for
disorder (ir)-relevance are not the same.

Another interesting comparison is to the standard PS model (or the pinning model).
The question of disorder relevance has been studied extensively in that context, see
[1, 6, 15, 21, 26, 33] among others. For that model, it has been proven that disorder
is irrelevant if and only if the process τ ∩ τ ′ terminates, with τ, τ ′ two independent
copies of the univariate renewal process — in particular it is irrelevant for all α < 1/2

and relevant for all α > 1/2, where we assume that the inter-arrival distribution is
P(τ1 = a) = L(a)a−(1+α). With regards to Theorems 2.1 and 2.3, and noticing that
the processes τ (r) in our setting and τ in the PS model are very similar, we observe
analogous criteria for disorder (ir)-relevance in both systems — the standard PS model
and our setting with P 6= P±x — with a marginal value α = 1/2.

Finally, the order of the shift of the critical point when m1 6= 0 in our setting matches
the standard PS model — that is βmax( 2α

2α−1 ,2) — but not when m1 = 0. Rewriting the
disorder field ω(i,j) = ζiξj +m1ζi +m1ξj +m2

1 with ζi, ξj independent, centered variables,
this seems to imply that when m1 6= 0, the main contribution to the disorder are the
terms m1ζi +m1ξj , which are very similar to the disorder of the PS model; whereas if
m1 = 0, the remaining term ζiξj carries a lower disorder intensity, leading to a shift of
the critical point of smaller order.

2.3.1 About the marginal cases

In our paper we did not fully treat the marginal cases, that is α = 1/2 when P 6= P±x and
α = 1 when P = P±x. By comparing our setting to the PS model, it is expected that the
assumptions of Theorems 2.1 and 2.2 are optimal, and that a shift of the critical point
can be proven whenever τ (r) ∩ τ ′ (r) is persistent for P 6= P±x, respectively whenever
τ ∩ τ ′ is persistent for P = P±x (notice that in [5] the authors make the same conjecture
for the gPS model with i.i.d. disorder). This is only conjectural for now, and we expect
that a great amount of technical work is needed in both cases (for instance, bivariate
renewal estimates are very complex in the case α = 1, see [3]).

2.3.2 About higher disorder intensities

To answer the issue of disorder (ir)-relevance, we only had to consider small disorder
intensities β (similarly to [5]). It would still be interesting to study the disordered model
for any β ∈ (0, β0), yet it seems particularly challenging. First, there is no clear reason
for hc(β) to be non-decreasing in β, hence for hc(β) to be positive for all β > 0 under
the assumptions of Theorems 2.3 or 2.5 (the proof from [25] for the PS model does not
apply here due to the correlations of ω). Second, apart for the smoothing of the phase
transition, our methods rely heavily on taking small values of β: regarding disorder
irrelevance in Section 3, we require that λ(2β) − 2λ(β) is sufficiently small to ensure
that some exponential moments are finite; and regarding the shift of the critical point,
we require an upper bound like (5.37) in the change of measure procedure, which we
obtained with a Taylor expansion argument. Both those estimate are not guaranteed for
larger values of β, and may even depend heavily on the choice of disorder distribution P.

Nonetheless when β is very large (close to β0), one could adapt [34, Theorem 2.1] to
prove that there is a strong disorder regime even when α < 1/2 (see [34, Corollary 3.2,
Remark 3.3]): this is based on a quite straightforward fractional moment estimate.
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2.3.3 About the proof of disorder relevance

Let us make some technical comments on our results for disorder relevance, starting
with the shift of the critical point. Our lower bounds on the critical point shift are
obtained with a coarse graining procedure, together with estimates on the fractional
moments of the partition function obtained via a change of measure argument. This
method has first been applied in [15] for the PS model, and was adapted to the i.i.d. gPS
model in [5]. In this paper we use the same coarse-graining procedure as [5], but the
change of measure argument — which in [5] relies on an i.i.d. tilt of the field ω — cannot
be replicated straightforwardly in the general case, because of the non-independent
structure of ω (we only do it for distributions P±x in Section 6, when proving the lower
bound of Theorem 2.5). In the case P 6= P±x, we introduce another change of measure
— a simultaneous tilt of both sequences ω̂ and ω̄ — to prove Theorem 2.3. Interestingly
enough, this change of measure relies on the correlated structure of the disorder, and
does not lead to pertinent estimates in the case P = P±x. Moreover, it is less costly than
the tilt of the field ω — for a system of size n = (n, n), we tilt 2n variables instead of n2.
In comparison to [5] or the case P = P±x, this induces the appearance of a shift of the
critical point when α ∈ (1/2, 1], and a greater shift when α ∈ (1, 2].

Let us stress that we have not pursued optimal upper and lower bounds on the
critical point shift: the βε in Theorems 2.3–2.5 can certainly be replaced by slowly
varying functions with a more sophisticated coarse graining technique, (see [6, 12] and
[22, Ch. 6] for the PS model). However the proofs of Theorems 2.3 and 2.5 are already
rather technical, and getting sharper bounds would have been even more laborious; so
we decided to stick with these “almost” optimal lower bounds for the sake of clarity.

As far as Theorem 2.7 is concerned, a small disappointment in our result is that our
proof relies heavily on Assumption 2.6, whereas one could expect to prove the same
smoothing inequality for any disorder law other than P±x — the same way smoothing
inequalities have been more recently proven for all laws in some disordered polymer
models (including PS and copolymer models, see [11]). Because the disorder we consider
is highly correlated, many technical difficulties appear when trying to prove a smoothing
inequality, even under strong technical assumptions (e.g. bounded and symmetric
disorder). We do not try to expand Theorem 2.7 under other assumptions in this paper,
because we could not handle the computations without very restrictive assumptions, and
even so the computations remain extremely cumbersome.

In the case P = P±x, we do not have any result on the smoothing of the phase
transition when α > 1. Actually, proving a smoothing inequality is also an issue in
the gPS model with i.i.d. disorder. It is conjectured in [5, Conj. 1.5] that the gPS
model model with (say Gaussian) i.i.d. disorder undergoes a smoothing phenomenon
with exponent min( 2α

α+1 ,
4
3 ) when α > 1. Regarding our previous comments about the

similarity between the i.i.d. gPS model and our setting with P = P±x, and comments
in [5] leading the authors to their conjecture, it is reasonable to expect that a similar
smoothing phenomenon occurs in our setting for disorder with distribution P±x, but it is
purely conjectural for now.

2.3.4 Open questions and perspectives

Let us list here some questions on this model that are not answered yet, and perspectives
for further study:

(i) Improving some of our results which are not fully satisfactory, namely: proving a
smoothing inequality for P = P±x (this matter seems highly related to the gPS model
with i.i.d. disorder), proving a smoothing without additional assumptions when P 6= P±x

EJP 26 (2021), paper 10.
Page 10/43

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP563
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The disordered gPS model for DNA denaturation

(which seems very technical), improving the upper bound from Proposition 2.4 to match
Theorem 2.3 when m1 = 0.

(ii) Dealing with the marginal cases, in particular P = P±x and α = 1, because
bivariate renewal processes with α = 1 are not extensively understood yet.

(iii) We also omitted the case α = 0, for two reasons: the case α = 0 should be
“strongly irrelevant”, in the sens that the quenched and annealed critical points should
always be equal (in the same spirit as in [2]), so it should somehow be easier to prove
disorder irrelevance; from a technical point of view, there are no estimates for bivariate
renewals in the case α = 0 (there is no α-stable domain of attraction), and this should
therefore require a separate analysis.

(iv) Dealing with higher values of β. As mentioned above, proving a strong disorder
regime when β approaches β0 should be feasible even when α < 1/2 by adapting [34,
Theorem 2.1]. However handling intermediate values of β may require much more
technicalities or even different methods.

(v) As stated in [24], the gPS model undergoes other phase transitions. What is the
effect of disorder on those? Do they still occur in the disordered model and are their fea-
tures modified? These questions are addressed in [31], but only via heuristic and numer-
ical arguments. More recently, in [23], the authors treat generalized (one-dimensional)
pinning models whose homogeneous versions exhibit a big-jump phase transition —
analogous to the other phase transitions in the homogeneous gPS model, see [4]. They
show that the presence of disorder is incompatible with the presence of a big jump,
and therefore completely smears out the big-jump phase transition (contradicting the
conclusions of [31]). This suggests in our case that only the localization/delocalization
phase transition survives in the disordered gPS model.

(vi) About the choice of disorder: with regards to the interaction function f , we
chose a product function in (2.1), but we can conjecture that a generic (symmetric)
function should lead to the same criteria for disorder (ir)-relevance, depending on the
correlations of the field (eβωi )i∈N2 . However we assumed the two sequences ω̂, ω̄ (i.e.
the two strands) to be independent, while it is known that two DNA strands have a
strong symmetry (an A-base on one strand faces a T-base on the other, same for C- and
G-bases). Therefore, a more pertinent choice of disorder field would be

ωi := f(ω̂i(1) , ω̂i(2)) , (2.9)

with ω̂ an (i.i.d.) sequence of random variables. This setting represents even more
faithfully the denaturation of DNA, and it has been considered in numerical studies
(see [19, 20]). But it is much more difficult to handle than the one in this paper: the
argument of Propostition 1.1 does not apply (even if the sequence ω̂ is still assumed
i.i.d.), hence even the convergence of the quenched free energy is not clear; moreover
the annealed model does not match the homogeneous one anymore, and its analysis
seems very challenging.

2.4 Notation and organisation of the paper

Let us introduce some notations for the subsequent sections. C1, C2, . . . will denote
some constants, and L1, L2, . . . some slowly varying functions. Unless otherwise specified,
they may depend on α but will not depend on any other parameter n, h, β, . . .. Moreover
L will always denote the function of the inter-arrival distribution (see (1.1)), and Lα the
function introduced in Theorem 1.2 for the critical behavior of the homogeneous model.

For any i , j ∈ N2, we will note i ↔ j if i = j or i and j are on the same line or column
(i.e. if i (r) = j (r) for some r ∈ {1, 2}, recall the notation i = (i (1), i (2)) for all i ∈ N2). We
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also introduce an order on N2:

i ≺ j if i (1) < j (1), i (2) < j (2) ,

i 4 j if i (1) ≤ j (1), i (2) ≤ j (2) .
(2.10)

For all a < b ∈ N, we define Ja, bK := [a, b] ∩ N. For all a 4 b ∈ N2, Ja,bK denotes
the rectangle in N2 with bottom-left corner a and top-right corner b : Ja,bK := {m ∈
N2 ;a 4 m 4 b}. Finally we will note ‖ · ‖ the L1 norm on N2: ‖i‖ := i (1) + i (2) for any
i ∈ N2.

The remainder of the paper is organized into four sections. In Section 3 we show
how to use a second moment method together with second moment estimates to prove
both disorder irrelevance (Theorems 2.1 and 2.2) and upper bounds on the shift of
the critical point (Proposition 2.4 and right-hand-side inequality in Theorem 2.5). In
Section 4 we prove the smoothing inequality of Theorem 2.7 under Assumption 2.6, via a
rare-stretch strategy. In Section 5, we display the coarse-graining method, and compute
estimates on the fractional moments to obtain lower bounds on the shift of the critical
point when P 6= P±x for all x > 0 (Theorem 2.3) Finally in Section 6, we adapt the
change of measure argument from [5] to distributions P±x to prove the same estimates
on the fractional moments, thereby proving the left-hand side inequality in Theorem 2.5.
Section 6 relies on the coarse-graining procedure introduced in Section 5, the other
sections are independent.

Additionally, we provide in Appendix A some computations on the partition function
of the homogeneous gPS model that are needed in Section 5, in Appendix B we collect
useful estimates on bivariate renewals, and in Appendix C we compute the upper bound
claimed below Proposition 2.4 for Gaussian disorder.

3 Disorder irrelevance

In this section, we choose n = (n, n) where n ∈ N (recall that we assume γ = 1). Let
us define the free version of the gPS model, where the constraint 1{n∈τ} is removed
in (1.3), i.e. the endpoints are free: its partition function is defined as

Zβ,q,free
n,h := E

[
exp

( ∑
i∈J1,nK

(
βωi − λ(β) + h

)
1{i∈τ}

)]
. (3.1)

We claim that the constrained and free partition functions are comparable: more precisely
for any α+ > α and m ∈ N2,

Zβ,qm,h ≤ Zβ,q,free
m,h ≤ Zβ,qm,h

(
1 + C1‖m‖3+α+ sup

l≤m, l↔m
(eβ(ωl−ωm))

)
, (3.2)

where C1 is a uniform constant (see [5, Lem. 2.2]: here again the proof is not altered
by our setting of disorder). In particular, the free energy is not modified with respect
to (1.6): we have that F(β, h) = limn→∞

1
n logZβ,q,free

n,h , both P(dω)-a.s. and in L1(P).
Note that, as in [4], we defined the free partition function simply by removing the

constraint {n ∈ τ}, but let us mention that in the literature the free ends may be
assigned some entropic cost: for instance see [24], where the authors consider the
(homogeneous) free partition function

∑
i,j≤nKf (i)Kf (j)Z0,q

n,h, with Kf some regularly
varying function. However this would not affect our results, since it has no effect at the
level of the free energy.

3.1 Second moment method

Our proof of disorder irrelevance relies on the idea that, if supn∈NE
[
(Zβ,q,free

n,0 )2
]
<

+∞, then Zβ,q,free
n,h should remain concentrated around its mean, at least in a certain
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regime for n, h; in particular the quenched and annealed free energy should remain
close to each other (this idea has been exploited and turned into a proof in [1, 33] for
the PS model). In [30] (for the PS model again), it is roughly showed that as long as
E
[
(Zβ,q,free

n,0 )2
]

is of order 1, the measure Pβ,q,free
n,0 does not differ much from P — this has

also been exploited in [6]. We use this idea to obtain the following statement.

Proposition 3.1. Fix some constant C > 1, and define

nβ := sup
{
n ∈ N ; E

[
(Zβ,q,free

n,0 )2
]
≤ C

}
. (3.3)

Then there is some (explicit) slowly varying function L1 such that the critical point
satisfies

0 ≤ hc(β) ≤ L1(n)n−min(α,1) , (3.4)

for any n ≤ nβ .
If (Zβ,q,free

n,0 )n∈N is bounded in L2(P), then nβ = +∞ (provided that C had been fixed
large), so hc(β) = 0; moreover there exists a slowly varying function L2 such that for all
h ∈ (0, 1),

F(β, h) ≥ L2(1/h)h1/min(1,α) . (3.5)

Before we prove this proposition, notice that it fully implies the non-relevance of the
disorder as soon as (Zβ,q,free

n,0 )n∈N is bounded in L2(P). We show in Section 3.2 that this
holds under the assumptions of either Theorem 2.1 or 2.2 with β small, proving both
theorems. Otherwise one can use (3.4) and an estimate of nβ to obtain an upper bound
for the shift of the critical point, which we do in Section 3.3.

(Note that it is not self-evident that E
[
(Zβ,q,free

n,0 )2
]
< ∞ for any n ∈ N. We actually

prove it in Section 3.2 for β < β0/2).

Proof. We already stated the left inequality of (3.4) with Jensen’s inequality in (1.13).
Let us prove the right inequality. Fix h ∈ R. We note that the sequence (E logZβ,qn,h)n∈N
is super-additive, so (1.6) and (3.2) give for any n ∈ N,

F(β, h) = sup
n∈N

1

n
E logZβ,qn,h ≥

1

n
E logZβ,q,free

n,h − C2
log n

n
. (3.6)

Moreover we have:

E logZβ,q,free
n,h ≥ hE

[
∂h logZβ,q,free

n,h

∣∣
h=0

]
+ E

[
logZβ,q,free

n,0

]
≥ hEEβ,q,free

n,0

[ ∑
i∈J1,nK

1{i∈τ}

]
− C3 log n, (3.7)

where we used the convexity of h 7→ logZβ,q,free
n,h , and the obvious bound Zβ,q,free

n,h ≥
P(‖τ 1‖ > 2n). Here we have to estimate the contact fraction of the renewal process
under Pβ,q,free

n,0 . We first do it under P.

Lemma 3.2. For any ε > 0, there exist C4 > 0 and n0 such that for any n ≥ n0,

P
(
|τ ∩ J1,nK| ≥ C4 f(n)

)
≥ 1− ε , (3.8)

where f(n) := nα/L(n) if α ∈ (0, 1) and f(n) := n/µ(n) if α ≥ 1, with µ(n) = E[τ
(1)
1 ] if

E[τ
(1)
1 ] < +∞ and µ(n) := E[τ

(1)
1 1{τ (1)

1 ≤n}
] if E[τ

(1)
1 ] = +∞.

Proof. When α ∈ (0, 1), this result is already proved in [5, Lem. A.2]. When α ≥ 1, we
have that

|τ (1) ∩ [1, n]|
f(n)

→ 1 in probability . (3.9)
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Indeed, when E[τ
(1)
1 ] < +∞ then this is simply the law of large numbers, whereas when

α = 1 and E[τ
(1)
1 ] = +∞, this is for example in [14]. Hence, provided that C4 < 1, then

P
(
|τ ∩ J1,nK| < C4f(n)

)
→ 0 as n→∞, which proves the lemma.

Let us denote An := {|τ ∩ J1,nK| ≥ C4 f(n)}. We can estimate the contact fraction
under Pβ,q,free

n,0 with the simple inequality:

Pβ,q,free
n,0 (Acn) ≤ 1{Zβ,q,free

n,0 ≤1/2} + 2E
[
1Acn e

∑
i∈J1,nK(βωi−λ(β))1{i∈τ}

]
, (3.10)

so we obtain for any ε > 0 and n ≥ n0,

E
[
Pβ,q,free

n,0 (Acn)
]
≤ P

(
Zβ,q,free
n,0 ≤ 1/2

)
+ 2P(Acn)

≤ 1− 1

4E
[
(Zβ,q,free

n,0 )2
] + 2ε,

(3.11)

where we used Paley-Zygmund inequality and Lemma 3.2. If we choose ε small enough
(more precisely ε < (8C)−1), and n ≤ nβ , this implies

EEβ,q,free
n,0

[
|τ ∩ J1,nK|

]
≥ C4 f(n)E

[
Pβ,q,free

n,0 (An)
]
≥ C5 f(n) , (3.12)

(where we get rid of the condition n ≥ n0 by adjusting C5 for finitely many terms). Going
back to (3.6) and (3.7), we finally obtain the following lower bound for any n ≤ nβ:

F(β, h) ≥ C6

n

(
hf(n)− C7 log n

)
, (3.13)

where we recall f(n) := n/µ(n) if α ≥ 1 (with µ(n) either a constant, or going to +∞
as a slowly varying function in the case α = 1, E[τ

(1)
1 ] = +∞.), and f(n) := nα/L(n) if

α ∈ (0, 1). If we take h = hc(β) in (3.13), then F(β, hc(β)) = 0, so we get

hc(β) ≤ C8
log n

f(n)
, (3.14)

which concludes the proof of (3.4), with L1(n) = C8 L(n) log(n) if α ∈ (0, 1); L1(n) =

C8µ(n) log n if α ≥ 1.
If (Zβ,q,free

n,0 )n∈N is bounded in L2(P), then we can choose C such that nβ =∞, so (3.4)
holds for any n ∈ N and we obviously have hc(β) = 0. Furthermore (3.13) also holds for
any n ∈ N, so if we take h > 0 and n = C9 Vα(1/h) where Vα is the asymptotical inverse
of b 7→ bmin(α,1)L1(b)−1 as b → ∞ and C9 is a suitable constant, we finally obtain (3.5)
from (3.13).

3.2 Second moment estimates

With regard to Proposition 3.1, it suffices to estimate E
[
(Zβ,q,free

n,0 )2
]

to prove disorder
irrelevance, or at least an upper bound on the shift of the critical point. To do so we
introduce two independent copies τ , τ ′ of a renewal process with law P.

Proposition 3.3. For any β ∈ [0, β0/2) one has Zβ,q,free
n,0 ∈ L2(P) for all n ∈ N and:

lim sup
n→∞

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e

3
2

(
λ(2β)−2λ(β)

)(
|τ (1)∩τ ′ (1)|+|τ (2)∩τ ′ (2)|

)]
, (3.15)

When P = P±x for some x > 0, one has for any β ∈ R+:

lim
n→∞

E±x

[(
Zβ,q,free
n,0

)2]
= E(τ ,τ ′)

[
e

(
λ(2β)−2λ(β)

)
|τ∩τ ′|

]
. (3.16)
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Note that this proposition also applies for any sequence of indices n ∈ N2 such that
n(1),n(2) →∞. Plugging those estimates into Proposition 3.1, this proves Theorems 2.1
and 2.2.

Proof of Theorems 2.1–2.2. In the general case we use the upper bound (3.15). If τ (1) ∩
τ ′ (1) is terminating, then |τ (1)∩τ ′ (1)| follows a geometric distribution (recall that τ (1) and
τ ′ (1) are independent univariate renewal processes), so it has some finite exponential
moment. The same holds for τ (2) ∩ τ ′ (2), and for their sum. Because λ(2β)− 2λ(β) ∼ cβ2

for some c > 0 when β → 0, there exists β1 such that the right hand side of (3.15) is
finite for any β ∈ [0, β1), so (Zβ,q,free

n,0 )n∈N is bounded in L2(P). Applying Proposition 3.1,
this proves Theorem 2.1.

When P = P±x for some x > 0, the same argument applies with (3.16) and τ ∩ τ ′ — if
τ ∩ τ ′ is terminating then |τ ∩ τ ′| also follows a geometric distribution — so this proves
Theorem 2.2.

Before proving Proposition 3.3, we need to introduce some new notations. Using a
replica trick and Fubini-Tonelli theorem, we can write the second moment of the partition
function as

E
[(
Zβ,q,free
n,0

)2]
= E(τ ,τ ′)E

[
exp

( ∑
i∈J1,nK

(βωi − λ(β))(1{i∈τ} + 1{i∈τ ′})
)]

. (3.17)

For any trajectories τ , τ ′ ⊂ N2, τ can be written as a sequence τ = {τ 1, τ 2, . . .} with

τ
(r)
k < τ

(r)
k+1 for every r ∈ {1, 2}, k ∈ N, and the same holds for τ ′. One can rewrite (3.17)

by taking the sum on i ∈ (τ ∪ τ ′) ∩ J1,nK (other terms are 0). We claim that there are
three kind of points in τ ∪ τ ′ contributing to this sum:

• i ∈ τ ∩ τ ′. We will call such i double points of τ ∪ τ ′.

• i ∈ τ ∪ τ ′ \ τ ∩ τ ′, and i (1) /∈ τ (1) ∩ τ ′ (1) and i (2) /∈ τ (2) ∩ τ ′ (2): that is, i is in either
τ or τ ′, and no other point from τ ∪ τ ′ is on the same line or column than i . We
will call those isolated points of τ ∪ τ ′.

• i ∈ τ ∪ τ ′ \ τ ∩ τ ′, and i (1) ∈ τ (1) ∩ τ ′ (1) or i (2) ∈ τ (2) ∩ τ ′ (2). We will call those
chained points of τ ∪ τ ′.

Let us explain the denomination chained points. Let i1 ∈ τ ∪ τ ′ be the first chained point
for the lexical order onN2. Assume i1 ∈ τ \τ ′ without loss of generality. Then there exists

i2 ∈ τ ′ \ τ such that i1 ↔ i2 and i (r)
1 = i (r)

2 , i (3−r)
1 < i (3−r)

2 for one r ∈ {1, 2} (because
i1 comes first in the lexical order). Moreover there is no other point i ∈ τ ∪ τ ′, i 6= i2

such that i ↔ i1, i 6= i1: indeed, it would imply i ∈ τ ′ \ τ , which is impossible since τ ′ is
strictly increasing on each coordinate.

Let us now assume that there exists another i3 ∈ τ ∪τ ′, i3 /∈ {i1, i2} such that i3 ↔ i2.
Then we obviously have i3 ∈ τ \ τ ′ (because i2 ∈ τ ′ and the sequence τ ′ has strictly

increasing coordinates), and i (3−r)
2 = i (3−r)

3 , i (r)
2 < i (r)

3 with r ∈ {1, 2} given above, since
τ has strictly increasing coordinates. Moreover, this i3 is unique (if it exists), because of
the same argument that proved i2 is unique.

By repeating this process until there is no more i ∈ τ ∪ τ ′ satisfying i ↔ ik, i /∈
{i1, . . . , ik}, we define a sequence (i1, i2, . . . , ik) of points in τ ∪ τ ′ with k ≥ 2, such that:

• i1, i3, . . . ∈ τ \ τ ′ and i2, i4, . . . ∈ τ ′ \ τ (or the other way arround).

• There is r ∈ {1, 2} such that for any 1 ≤ l ≤ k−1, one has i (r)
l = i (r)

l+1, i
(3−r)
l < i (3−r)

l+1

if l is odd, and i (3−r)
l = i (3−r)

l+1 , i (r)
l < i (r)

l+1 if l is even. In particular, i l ↔ i l+1 for any
1 ≤ l ≤ k − 1.
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• There is no i ∈ τ ∪ τ ′, i /∈ {i1, . . . , ik} such that i ↔ i l for some 1 ≤ l ≤ k.

We call σ1 = (i1, . . . , ik) a chain of points in τ ∪ τ ′. Note that i1, . . . , ik are all chained
points as defined previously. Note also that this construction may lead to an infinite
chain in N2, but is always finite if we restrict τ ∪ τ ′ to J1,nK.

Furthermore, if we apply the same construction process to τ ∪ τ ′ \ σ1, we can define
another chain of points σ2 satisfying the same properties; and by repeating it again, we
obtain a sequence (σ1,σ2, . . .) of chains of points in τ ∪ τ ′ satisfying the same properties
(once again this sequence is finite for τ ∪ τ ′ restricted to J1,nK, and may be infinite
in N2). Moreover, this sequence covers all chained points (indeed, any chained point
i ∈ τ ∪ τ ′ is only preceded by a finite number of points in τ ∪ τ ′ for the lexical order, so
the construction process always reaches i ).

0

τ1

τ2

τ3

τ4 = τ ′
6

τ6

τ ′
2

τ ′
4

τ ′
5

τ ′
8

Figure 2: Representation of the union of two renewal sets τ , τ ′ ⊂ N2. It has one double
point τ 4 = τ ′6, several isolated points (τ ′1, τ

′
3, τ
′
7 and τ 5 in lexical order), and three

chains of points (τ ′2, τ 1), (τ 2, τ
′
4, τ 3, τ

′
5) and (τ ′8, τ 6).

Using this construction, we can partition τ ∪ τ ′ as stated in the following proposition.

Proposition 3.4. Let τ and τ ′ be two subsets of N2 such that they can be written as
sequences τ = {τ 1, τ 2, . . .} with τ (r)

k < τ
(r)
k+1 for every r ∈ {1, 2}, k ∈ N (same for τ ′).

Then the subset τ ∪ τ ′ can be partitioned like this:

τ ∪ τ ′ = ν ∪ ρ ∪
( ⋃
m∈N

σm

)
, (3.18)

where ν := τ ∩ τ ′, ρ is the set of isolated points of τ ∪ τ ′, S :=
⋃
m∈N σm is the set

of chained points of τ ∪ τ ′, and σm,m ∈ N are chains of points. All the sets ν,ρ and
σm,m ∈ N are separated.
Moreover, if i, j ∈ τ ∪ τ ′, i 6= j and i↔ j, then there exists m ∈ N such that i, j ∈ σm.

The decomposition in (3.18) comes from the construction above. The latter claim is
obvious: if i ↔ j and i 6= j , then neither i or j can be a double point or isolated. So they
are chained points, and they must be in the same chain (because of the last property
of chains). This claim also ensures that disorder values (ωi )i∈τ∪τ ′ are independent
from one set of the partition to another. We now have all the needed tools to prove
Proposition 3.3.

Proof of Proposition 3.3. We partition (τ ∪ τ ′) ∩ J1,nK into νn,ρn,σn,m,m ∈ N using
Proposition 3.4, and we use it to separate the right hand side of (3.17) in independent
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products:

E
[(
Zβ,q,free
n,0

)2]
= E(τ ,τ ′)E

[ ∏
i∈νn

e2(βωi−λ(β))
∏
i∈ρn

eβωi−λ(β)
∏
m∈N

∏
i∈σn,m

eβωi−λ(β)

]

= E(τ ,τ ′)

[
E
[ ∏
i∈νn

e2(βωi−λ(β))
]
E
[ ∏
i∈ρn

eβωi−λ(β)
] ∏
m∈N

E
[ ∏
i∈σn,m

eβωi−λ(β)
]]
.

(3.19)

We used that 1{i∈τ} + 1{i∈τ ′} = 2 if and only if i ∈ τ ∩ τ ′, and 1{i∈τ} + 1{i∈τ ′} = 1 for
any other i ∈ τ ∪τ ′ \τ ∩τ ′. Note that an isolated point in (τ ∪τ ′)∩ J1,nK can be chained
for a higher n, thus we write the dependance on n of the decomposition in (3.19) with a
subscript.

Now we have to compute those expectations. Note that (ωi )i∈νn is an independent
family, and so is (ωi )i∈ρn . Thus E

[∏
i∈ρn

eβωi−λ(β)
]

=
∏

i∈ρn
E[eβωi−λ(β)] = 1 (recall that

eλ(β) = E[eβω1 ] for any β ∈ [0, β0)), and E
[∏

i∈νn e
2(βωi−λ(β))

]
= e|νn|(λ(2β)−2λ(β)).

Let σ = {i1, i2, . . . , ik}, k ∈ N be a (finite) chain of (τ ∪ τ ′) ∩ J1,nK as defined
previously, and let us estimate E

[∏
i∈σ e

βωi−λ(β)
]
.

General case This expectation cannot be computed in the general case, but we can
obtain an upper bound with Cauchy-Schwarz inequality. In Remark 3.5 we will discus
why we think this upper bound is not sharp and can be improved, but it is fully sufficient
to prove disorder irrelevance.

Let us note σodd = {i1, i3, . . .} and σeven = {i2, i4, . . .}. Notice that σodd ⊂ τ and
σeven ⊂ τ ′ (or the other way around), and recall that τ and τ ′ are strictly increasing
on each coordinate. Hence (ωi )i∈σeven is a family of independent variables, and so is
(ωi )i∈σodd . Applying Cauchy-Schwarz inequality, we obtain

E
[∏
i∈σ

eβωi−λ(β)
]
≤ E

[ ∏
i∈σodd

e2(βωi−λ(β))
] 1

2

E
[ ∏
i∈σeven

e2(βωi−λ(β))
] 1

2

≤
∏

i∈σodd

E
[
e2(βωi−λ(β))

] 1
2
∏

i∈σeven

E
[
e2(βωi−λ(β))

] 1
2

≤ e(λ(2β)−2λ(β))
|σodd|+|σeven|

2 = e(λ(2β)−2λ(β))
|σ|
2 ,

(3.20)

where we recall the definition of λ (see (1.2)), and that those expectations are finite if
β < β0/2. Therefore we obtain the following upper bound on (3.19):

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e

(
λ(2β)−2λ(β)

)(
|νn|+ |Sn|2

)]
. (3.21)

(Recall that Sn :=
⋃
m∈N σn,m). In particular this proves that Zβ,q,free

n,0 ∈ L2(P) for any
n ∈ N and β < β0/2.

Let us note τ4n := τ ∩ J1,nK (resp. τ ′4n := τ ′ ∩ J1,nK). Using the decomposition of
τ4n ∪ τ ′4n from Proposition 3.4, one can prove by induction:

1

2
(|τ (1)

4n ∩ τ
′ (1)
4n |+ |τ

(2)
4n ∩ τ

′ (2)
4n |) ≤ |νn|+ |Sn| ≤ 2 (|τ (1)

4n ∩ τ
′ (1)
4n |+ |τ

(2)
4n ∩ τ

′ (2)
4n |) . (3.22)

(The constants are optimal: the left hand size is an equality if |νn| > 0,Sn = ∅, and
the right hand size is an equality if νn = ∅ and Sn only contains chains of length 2).
So (3.21) becomes

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e

(
λ(2β)−2λ(β)

)(
|νn|

2 +|τ (1)
4n∩τ

′ (1)
4n |+|τ

(2)
4n∩τ

′ (2)
4n |
)]

≤ E(τ ,τ ′)

[
e

3
2

(
λ(2β)−2λ(β)

)(
|τ (1)

4n∩τ
′ (1)
4n |+|τ

(2)
4n∩τ

′ (2)
4n |
)]
,

(3.23)
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where we used |νn| ≤ |τ (1)
4n ∩ τ

′ (1)
4n | + |τ (2)

4n ∩ τ
′ (2)
4n |, and λ(2β) − 2λ(β) ≥ 0 for any

β ≥ 0. Moreover |τ (1)
4n ∩ τ

′ (1)
4n |+ |τ

(2)
4n ∩ τ

′ (2)
4n | is non-decreasing in n, and converges to

|τ (1) ∩ τ ′ (1)|+ |τ (2) ∩ τ ′ (2)|. Using the monotone convergence theorem, this finishes the
proof of (3.15).

Case ω ∼ P±x, x > 0 In that case we can compute E±x
[∏

i∈σ e
βωi−λ(β)

]
exactly for any

finite chain σ = {i1, i2, . . . , ik}, k ∈ N. Indeed, we can write without loss of generality

ωi1 = ω̂1ω̄1, ωi2 = ω̂1ω̄2, ωi3 = ω̂2ω̄2, . . . (3.24)

and so on, with (ω̂1, ω̄1, ω̂2, . . .) a family of i.i.d. random variables. Then we can compute

E±x

[∏
i∈σ

eβωi−λ(β)
]

= e−kλ(β)E±x

[
E±x

[
eβω̂1ω̄1

∣∣(ω̂j)j≥1, (ω̄j)j≥2

] k∏
l=2

eβωil

]

= e−kλ(β)E±x

[eβxω̂1 + e−βxω̂1

2

k∏
l=2

eβωil

]
= e−(k−1)λ(β)E±x

[ k∏
l=2

eβωil

]
,

where we used that 1
2 (eβxω̂1 +e−βxω̂1) = cosh(βxω̂1) = cosh(βx2) = eλ(β) (because |ω̂1| = x

P±x-a.s. and cosh is symmetric). By iteration, we finally obtain for any finite chain σ and
β ∈ R+,

E±x

[∏
i∈σ

eβωi−λ(β)
]

= 1 . (3.25)

Recalling (3.19), we get the exact formula:

E±x

[(
Zβ,q,free
n,0

)2]
= E(τ ,τ ′)

[
e

(
λ(2β)−2λ(β)

)
|νn|
]
. (3.26)

And we obtain (3.16) by applying the monotone convergence theorem.

Notice that the particular behavior of distributions P±x relies solely on (3.25). When
σ is a chain of length two, it corresponds to computing the correlations of the field
(eβωi )i∈N2 , as discussed in Section 2.3.

3.3 Upper bounds for the shift of the critical point

When we cannot bound the second moment of the partition function for all n ∈ N,
we can still estimate nβ with the finite volume equivalent of Proposition 3.3 (that is
inequality (3.23) when P 6= P±x for all x > 0, and identity (3.26) when P = P±x for some
x > 0): thanks to Proposition 3.1, we are able to obtain an upper bound for the shift of
the critical point.

3.3.1 Case P 6= P±x for all x > 0: Proposition 2.4

Let us consider (3.23): we can split the two intersections of the projections with a
Cauchy-Schwarz inequality

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e3(λ(2β)−2λ(β))|τ (1)

4n∩τ
′ (1)
4n |
]
, (3.27)

where we also used n = (n, n) and that both projections have the same law. Recall that
τ (1), τ ′ (1) are independent univariate renewal processes with inter-arrival distribution
P(τ (r) = a) = L̃(a)a−(1+α), and recall that λ(2β)− 2λ(β) ∼ cβ2 as β ↘ 0 for some c > 0.
In particular this upper bound has already been studied in [1, 33] for α ∈ (1/2, 1), and
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gives the estimate nβ ≥ L3(1/β)β
−2

2α−1 (we do not write the details here). In the case
α ≥ 1, one easily gets from (3.27) that the second moment is bounded by exp(cβ2n),
giving the estimate nβ ≥ c′β−2. Recollecting (3.4), this fully proves Proposition 2.4
(notice that when m1 = 0 and α ≥ 1, this does not lead to a better bound for the critical
point than the trivial one hc(β) ≤ λ(β) = βm2

1 + β2m2
2/2(1 + o(1))).

Remark 3.5. As far as Theorem 2.3 is concerned, Proposition 2.4 yields a satisfactory
upper bound when m1 6= 0, but not when m1 = 0, m4 > m2

2. We strongly believe that

our lower bound is of the right order (i.e. βmax( 4α
2α−1 ,4) when m1 = 0, m4 > m2

2), and that
our upper bound is too rough when we estimate the second moment — even though it is
sufficient to prove disorder irrelevance and give a satisfactory upper bound when m1 6= 0.
Furthermore, a work in progress with Q. Berger [7] is leading us to the following claim:

Suppose α ∈ (1/2, 1), m1 = 0 and m4 > m2
2. Let β > 0 and mβ := (mβ ,mβ)

with mβ ∼ β
−4

2α−1L(1/β)
2

2α−1 as β ↘ 0. Then Zβ,q,free
mβ ,0

converges in distribution

to some non-trivial random variable Zfree as β ↘ 0. This convergence also

holds in L2 under some appropriate coupling.

In particular this claim implies that nβ ∼ L4(1/β)β−4/(2α−1) when α ∈ (1/2, 1): once
this result is proven, it will directly give an upper bound hc(β) ≤ L5(1/β)β4α/(2α−1),
which is fully satisfactory with regards to Theorem 2.3 in the case m1 = 0, m4 > m2

2.
Moreover, when ω̂, ω̄ are two sequences of centered, i.i.d. Gaussian variables, one can

fully compute the contribution of chains of points to the second moment of the partition
function, which eventually leads to (for β sufficiently small)

E
[(
Zβ,q,free
n,0

)2] ≤ 2E(τ ,τ ′)

[
eC10β

4|τ (1)
4n∩τ

′ (1)
4n |
]
. (3.28)

This is the same as (3.27) with an exponent of order β4 instead of λ(2β)− 2λ(β) ∼ cβ2.

In particular it gives the expected upper bound hc(β) ≤ L6(1/β)βmax( 4α
2α−1 ,4) on the shift

of the critical point, supporting again the idea that Theorem 2.3 gives the correct order
of the lower bound. We carry out the full computation in Appendix C.

3.3.2 Case P = P±x for some x > 0

In that case we have an exact computation of the second moment (3.26), where the
right hand side is the same as in the proof of [5, Prop. 3.3] for the gPS model with i.i.d.
disorder. Thus we obtain the same estimate as in [5], that is nβ ∼ L7(1/β)β−max( 2α

α−1 ,4)

for any α > 1 (see the proof of [5, Prop. 3.3] for the details). Therefore Proposition 3.1
immediately gives an upper bound on hc(β) of order L8(1/β)βmax( 2α

α−1 ,4) which proves
the right inequality in Theorem 2.5.

4 Disorder relevance: smoothing of the phase transition when
P 6= P±x

The inequality of Theorem 2.7 is proven via a rare-stretch strategy, as done in [26]
(or more recently [11]). We introduce some notations that we use in this section and
the next one to lighten upcoming formulae: we write Zq

n := Zβ,qn,h for the (constrained)
partition function with quenched disorder (the choice of parameters β and h will always
be explicit), and Zn,h := Z0,q

n,h for the homogeneous (or annealed) partition function.
Moreover we will denote by Zq

a,b the partition function conditioned to start from a and
constrained to end in b . More precisely for any 0 4 a ≺ b ,

Zq
a,b := E

[
exp

( ∑
i∈Ja+1,bK

(βωi − λ(β) + h)1{i∈τ}

)
1{b∈τ}

∣∣∣a ∈ τ] , (4.1)
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and Zq
a,b := 0 if a ⊀ b . Note that Zq

a,b has same law as Zq
b−a , and for any a 4 b 4 c 4 d ,

Zq
a,b and Zq

c,d are independent.

4.1 Rare-stretch strategy

The rare-stretch strategy consists in obtaining a lower bound on the partition function
by considering the contribution of only one type of trajectories, which target favorable
(but sparse) regions in the environment.

Fix β > 0 and h ∈ R, and let Al ⊂ Rl
2

, l ∈ N be a sequence of Borel sets. We will
write l := (l, l), and assume that there is G ≥ 0, C ≥ 0 such that for any l ∈ N (or at least
infinitely many l ∈ N):

• 1

l
logZq

l ≥ G , for any ω such that ωJ1,lK := (ωi )i∈J1,lK ∈ Al,

• 1

l
logP(ωJ1,lK ∈ Al) ≥ −C .

(4.2)

Here G stands for gain, and C for cost.

Lemma 4.1. For any β > 0 and h ∈ R, if G, C are defined as in (4.2) (for some sequence
of (Al)l∈N), then the following holds:

G − (2 + α)C > 0 =⇒ F(β, h) > 0 . (4.3)

Proof. We replicate here the proof of [11], but with our disorder indexed by N2. Fix l
such that the above conditions hold, and let Ti(ω), i ∈ N be the indices of blocks of size
l × l on the diagonal satisfying the event Al. More precisely, let T0(ω) := 0, and

Ti(ω) := inf{n > Ti−1(ω) ; ωJ(n−1)l+1,nlK ∈ Al} , (4.4)

for any i ≥ 1. Note that
(
Ti+1(ω)− Ti(ω)

)
i∈N is an i.i.d. sequence with law Geom

(
P(Al)

)
,

so E[T1] = P(Al)−1 ≤ eCl. We can give a lower bound of the partition function on the
block Tkl ,

Zq
Tkl
≥

k∏
i=1

Zq
Ti−1l , (Ti−1)l Z

q
(Ti−1)l , Til

. (4.5)

Note that ωJ(Ti−1)l , TilK ∈ Al for all i by definition of Ti, so that Zq
Ti−1l , (Ti−1)l ≥ eGl by

definition of G. We also have the obvious bound Zq
a,b ≥ K(‖b − a‖)eβωb−λ(β)+h for any

a ≺ b . Therefore we have

Zq
Tkl
≥

k∏
i=1

(
eβω(Ti−1)l−λ(β)+hK(‖(Ti − 1− Ti−1)l‖)× elG

)
≥ eklG

k∏
i=1

cα+
eβω(Ti−1)l−λ(β)+h(

l(Ti − Ti−1)
)2+α+

,

(4.6)

where the last inequality holds for any α+ > α and a convenient cα+
> 0, by Potter’s

bound (cf. [8]). We can now estimate from below the free energy, using the strong law of
large numbers:

F(β, h) = lim
k→∞

1

l Tk
logZq

Tkl

≥ lim
k→∞

k

Tk

1

kl

(
klG +

k∑
i=1

[
cα+,β,h + βω(Ti−1)l − (2 + α+) log

(
l(Ti − Ti−1)

)])
≥ 1

E[T1]

(
G +

cα+,β,h + βE[ω1]

l
− (2 + α+)

log l + E[log(T1)]

l

)
≥ e−Cl

(
G − (2 + α+)C +

c′α+,β,h
− (2 + α+) log l

l

)
,

(4.7)

EJP 26 (2021), paper 10.
Page 20/43

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP563
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


The disordered gPS model for DNA denaturation

where we set cα+,β,h := log cα+
− λ(β) + h. For the last inequality, we used Jensen’s

inequality to get that E[log(T1)] ≤ log(1/P(Al)) ≤ Cl. Finally, if G − (2 + α)C > 0, then it
also holds for some α+ > α, and the right hand side is strictly positive for l large enough,
which implies F(β, h) > 0 and concludes the proof.

4.2 Smoothing of the phase transition in β

Let us discuss the strategy of the proof first. For the PS model (with i.i.d. disorder),
the method used in [26] to prove a smoothing is to fix h = hc(β), so that F(β, hc(β)) = 0

and Lemma 4.1 implies G ≤ (2+α)C. Then one chooses a gain G close to F(β, hc(β)+u) —
which matches the free energy of the model with a shifted disorder, i.e. with ω replaced
by ω + u/β — and expresses the corresponding cost C with the cost of the change of
measure from ω to ω + u/β (which can be estimated via a relative entropy inequality),
therefore obtaining an upper bound on the free energy near the critical point.

However this method doesn’t apply well to our model, mostly because of the dimen-
sion of the field ω (this is also discussed in [5] for an i.i.d. disorder). A direct shift of the
disorder field ω is too costly (we shift n2 variables in a model of size n). On the other
hand an i.i.d. shift of the sequences ω̂ and ω̄ by u/

√
β — although involving only 2n

variables — is not easily related to a free energy with different parameters. Therefore,
we needed to adapt this method. We first prove a smoothing inequality with respect
to β instead of h, using a dilation of the disorder instead of a shift, i.e. we replace the
sequence ω̂ (resp. ω̄) by (1 + δ)ω̂ (resp. (1 + δ)ω̄). This change of measure matches the
same model with disorder intensity β(1 + δ)2 ≈ β(1 + 2δ) instead of β, and is not too
costly (we change the law of 2n variables in a system of size n).

Let us introduce the “shifted” free energy F̃(β, h) := F(β, h+ λ(β)) (i.e. if we omit the
term −λ(β) in the definition of the partition function): in view of Proposition 1.1, we
get that (β, h) 7→ F̃(β, h) is convex, so the critical line β 7→ h̃c(β) := inf{h : F̃(β, h) > 0} =

hc(β)− λ(β) is concave. Actually it is decreasing and continuous (recall that the upper
bound in (1.13) is strict for β > 0), so one can consider the inverse map of β 7→ h̃c(β),
that we denote h 7→ β̃c(h): for each h > 0, the value β̃c(h) is the critical value for the
map β 7→ F̃(β, h) corresponding to the localization transition. One can therefore consider
the transition as β varies, and the next proposition tells this phase transition is smooth,
i.e. for fixed h, the growth of β 7→ F̃(β, h) close to β̃c(h) is at most quadratic.

Proposition 4.2. Under Assumption 2.6, for any h > 0, there exists ch > 0 such that for
any δ ∈ (0, 1), one has

F̃
(
(1 + δ)β̃c(h), h

)
≤ chδ

2 . (4.8)

Proof. For any δ > 0, we define P̃l,δ the law of the disorder in J1, lK dilated by (1 + δ) on

each coordinate (i.e. ω̂J1,lK is replaced with (1 + δ)ω̂J1,lK, same for ω̄J1,lK). We denote P̃δ
the infinite product law. Note that H(P̃l,δ|P) = lH(P̃1,δ|P), and that there is some c > 0

such that H(P̃1,δ|P) ≤ c δ2 by Assumption 2.6. For any β > 0, h ∈ R and l ∈ N, let us
define

Al :=
{
ωJ1,lK ∈ Rl

2

;
1

l
log Z̃q

l ≥
1

2
F̃
(
β(1 + δ)2, h

)}
, (4.9)

where Z̃q
l := Zβ,ql ,h+λ(β), so that liml→+∞

1
l log Z̃q

l := F̃(β, h).

The setAl is chosen so that the gain (as defined for Lemma 4.1) is G = 1
2 F̃
(
β(1+δ)2, h

)
,

where F̃
(
β(1 + δ)2, h

)
is exactly the free energy of the gPS model with partition function

Z̃q
l , where we changed the disorder law from P to P̃δ (because multiplying ω̂ and ω̄ by

(1 + δ) is the same thing as multiplying β by (1 + δ)2). Thus 1
l log Z̃q

l converges P̃δ-a.s. to
F
(
β(1 + δ)2, h

)
when l→∞, so we obviously have that

P̃l,δ(Al) −→
l→∞

1 . (4.10)
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Now we can estimate P(Al) via a standard relative entropy inequality, which gives

P(Al) ≥ P̃l,δ(Al) exp
(
− 1

P̃l,δ(Al)
(
H(P̃l,δ|P) + e−1

))
. (4.11)

We therefore get that P(Al) ≥ e−2/e

2 e−2cδ2l, for l large enough (so that P̃l,δ(Al) ≥ 1/2).
Therefore, for l large (how large depends on δ), we get that

1

l
logP(Al) ≥ −3cδ2 . (4.12)

Now, for any h > 0, fix β = β̃c(h), so that h = h̃c(β). Then F̃(β, hc(β)) = F̃(β̃c(h), h) = 0,
so Lemma 4.1 implies G − (2 + α)C ≤ 0, thereby

1
2 F̃
(
(1 + δ)2β̃c(h), h)

)
− 3c(2 + α)δ2 ≤ 0 , (4.13)

which gives F̃
(
(1 + δ)2β̃c(h), h)

)
≤ c′δ2. This concludes the proof by simply recalling that

F̃ is non-decreasing in its first coordinate, so F̃
(
(1 + δ)β̃c(h), h)

)
≤ F̃
(
(1 + δ)2β̃c(h), h)

)
.

4.3 Conclusion: smoothing of the phase transition in h

Once we have the smoothing inequality with respect to β of Proposition 4.2, we are
able transcribe it to a smoothing in h using the convexity properties of F̃(β, h). We now
conclude the proof of Theorem 2.7, thanks to Proposition 4.2.

Proof of Theorem 2.7. We fix β > 0, and we take t > 0 small enough such that h̃c(β)+t <

0. Recall that h̃c(·) is a concave, non-increasing, continuous function: there exists
βt ∈ (0, β) such that h̃c(βt) = h̃c(β) + t. Hence,

F(β, hc(β) + t) = F̃(β, h̃c(β) + t) = F̃(βt + u, h̃c(βt)) , (4.14)

where u = β − βt > 0. Using Proposition 4.2 and the fact that β̃c(h̃c(βt)) = βt, we have

F(β, hc(β) + t) = F̃
(
βt(1 + u/βt), h̃c(βt)

)
≤ ch̃c(βt)(u/βt)

2 . (4.15)

Note that βt ↗ β > 0 as t ↘ 0, so the factor ch̃c(βt)β
−2
t is bounded by a constant that

depends only on β, uniformly in t sufficiently small. Using that h̃c(·) is concave, we also
have

− t

u
=

h̃c(β)− h̃c(βt)
β − βt

≤ h̃′c(β
+
t ) ≤ h̃′c((β/2)+) < 0 , (4.16)

where h̃′c(·+) is the right derivative of h̃c, and the second inequality holds for any t

sufficiently small (because h̃′c(β
+
t ) < 0 as soon as βt > 0, and it decreases as t↘ 0). We

deduce that t ≥ cβ u for some cβ > 0, and plugging it in (4.15), we finally obtain

F(β, hc(β) + t) ≤ c′β t2, (4.17)

where c′β > 0 depends only on β. This concludes the proof of Theorem 2.7.

5 Disorder relevance: shift of the critical point when P 6= P±x

In this section, we prove Theorem 2.3, that is a the lower bound for the shift of the
critical point when P 6= P±x for all x > 0. We will discuss the case P = P±x in Section 6.
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5.1 Coarse-graining and fractional moment method

Our proof is based on a fractional moment method, introduced in [15] for the original
PS model, and slightly adapted to the gPS model with independent disorder in [5]. The
first part of the proof (the coarse-graining procedure) is identical to that of [5], but the
different estimates are specific to our setting.

Recall the notation Zq
n := Zβ,qn,h from Section 4. Let us define for any n ∈ N2 (note

that we do not assume n = (n, n) in this section) the fractional moment of the partition
function:

An := E
[(
Zq
n

)η]
, (5.1)

where η ∈ (0, 1) is a constant we will fix later on (notice that An < ∞ because Zβ,qn,h ∈
L1(P)). For any k ∈ N we set k := (k, k), and for n < k , we decompose the partition
function Zq

n according to the first point n − i of τ which lies in the square Jn − k + 1,nK
(in particular 0 4 i ≺ k ), and the point n − i − j before: in particular it is the last
point of τ which isn’t in the previous square, so it can only be in one of the three boxes
J0,n(1) − kK× J0,n(2) − kK, Kn(1) − k,n(1)K× J0,n(2) − kK or J0,n(1) − kK×Kn(2) − k,n(2)K.
This decomposition gives us for any n < k ,

Zq
n = Zq,1

n + Zq,2
n + Zq,3

n , (5.2)

where we write for any s ∈ {1, 2, 3},

Zq,s
n :=

∑
(i ,j)∈Dsk,n

Zωn−i−j ×P(τ 1 = j)eβωn−i−λ(β)+h × Zωn−i ,n , (5.3)

where Zωn−i ,n is defined in (4.1), and the sets Ds
k ,n , s ∈ {1, 2, 3} are defined as follow

(with N0 := N ∪ {0}):

D1
k ,n := {(i , j) ∈ N2

0 ×N2 ; i ≺ k 4 i + j 4 n} ,

D2
k ,n := {(i , j) ∈ N2

0 ×N2 ; i ≺ k , i (1) + j (1) < k, i (2) + j (2) ≥ k, i + j 4 n} ,

D3
k ,n := {(i , j) ∈ N2

0 ×N2 ; i ≺ k , i (1) + j (1) ≥ k, i (2) + j (2) < k, i + j 4 n} .

(5.4)

We also define Ds
k ,∞ = ∪n∈N2Ds

k ,n (which means we drop the condition i + j 4 n).

Recall that Zq
n−i ,n and Zq

i have same law, and that Zq
n−i−j , e

βωn−i−λ(β)+h and Zq
n−i ,n are

independent. Using this together with the definition of An and the standard inequality
(
∑
i ai)

η ≤
∑
i a
η
i for any η ∈ (0, 1) and ai ≥ 0, i ∈ N, we obtain

An ≤ A1
n +A2

n +A3
n , (5.5)

where for any s ∈ {1, 2, 3},

Asn := cβ,h,η
∑

(i ,j)∈Dsk,n

An−i−j ×K(‖j‖)η ×Ai , (5.6)

and cβ,h,η := E[e(βω1−λ(β)+h)η] = eλ(ηβ)−ηλ(β)+ηh. Note that cβ,h,η is uniformly bounded
for β, h small and 0 ≤ η ≤ 1, so we can bound it by a constant C1.

As in [5], the proof of Theorem 2.3 relies on the following claim.

Lemma 5.1. For fixed β > 0 and h ∈ R, if there exist η ∈ (0, 1) and k ∈ N such that
ρ1 + ρ2 + ρ3 ≤ 1, where

ρs := C1

∑
(i,j)∈Dsk,∞

K(‖j‖)ηAi , s ∈ {1, 2, 3} , (5.7)

then F(β, h) = 0.
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0

n

k

k

n− i− j

n− i
j

i

Figure 3: Decomposition of the partition function for the coarse-graining procedure.
n − i denotes the first renewal epoch in the square Jn − k + 1,nK, and n − i − j is the
renewal epoch before: it is either in the bottom left rectangle (e.g. the representation
in the figure; those are the trajectories contributing to Zq,1

n ), bottom right (Zq,2
n ) or top

left (Zq,3
n ).

Proof. The proof is straightforward. Define A := sup{Ai , i
(1) < k or i (2) < k}. By

Jensen’s inequality, one obviously has Ai ≤ E[Zq
i ]η ≤ eηhmin(i(1),i(2)), because there

are at most min(i (1), i (2)) renewal points in J1, iK. Thus we have A ≤ eηhk. Using the
decomposition (5.5), (5.6) of An and ρ1 + ρ2 + ρ3 ≤ 1, we deduce (by induction) An ≤ A
for any n ∈ N2. By applying Jensen’s inequality, we conclude

F(β, h) = lim
n→∞

n=(n,n)

1

η n
E log

[
(Zq

n)η
]
≤ lim

n→∞
n=(n,n)

1

η n
logAn = 0 . (5.8)

Proof of Theorem 2.3. We now assume P 6= P±x for all x > 0. We fix h as in Theorem 2.3:

h = h(β) :=

{
βmax( 2α

2α−1 ,2) + ε if m1 6= 0,

βmax( 4α
2α−1 ,4) + ε if m1 = 0, m4 > m2

2,
(5.9)

where ε > 0 is arbitrarily small, but fixed. Our goal is to choose η ∈ (0, 1) and k ∈ N
such that ρ1, ρ2 and ρ3 (which is symmetric to ρ2) are small, so that Lemma 5.1 implies
F(β, h) = 0 and hc(β) ≥ h. First we pick

k = k(β) :=
1

F(0, h)
, (5.10)

which is the correlation length of the annealed system (actually we take the integer part
of it, but we omit to write it for clarity purpose). Notice that k →∞ as h→ 0, and recall
that Theorem 1.2 allows us to write k = Lα(1/h)h−1/α with Lα a slowly varying function
when α ≤ 1; and k ∼ cαh

−1 for some cα > 0 as h ↘ 0 when α > 1 (here we slightly
changed the notations from the theorem, to lighten upcoming computations).

Note that, if η is picked such that (2 + α)η > 2, then we have

∑
j<k−i

K(‖j‖) ≤ L1(‖k − i‖)
‖k − i‖(2+α)η−2

. (5.11)
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Therefore,

ρ1 ≤
∑
i≺k

L1(‖k − i‖)
‖k − i‖(2+α)η−2

Ai ≤
∑
i≺k

L2(k − i (2))

(k − i (2))(2+α)η−2
Ai , (5.12)

(because ‖k − i‖ ≥ k − i (2)). Similarly,

∑
j(1)<k−i(1)

j(2)≥k−i(2)

K(‖j‖) ≤
∑

j(2)≥k−i(2)

L3(j (2))

(j (2))(2+α)η−1
≤ L4(k − i (2))

(k − i (2))(2+α)η−2
. (5.13)

Thus,

ρ2 ≤
∑
i≺k

L4(k − i (2))

(k − i (2))(2+α)η−2
Ai =: S . (5.14)

Let us denote this sum S. Because ρ3 is symmetric to ρ2, and because ρ1 and ρ2 are
bounded by the same sum S (up to the slowly varying function, which doesn’t change
the behavior of the sum), Theorem 2.3 will be proven as soon as we show that S can be
made small, by applying Lemma 5.1. For that we need some precise estimates on Ai

for i ≺ k . We will handle Ai differently depending on whether i is small or not, using
Lemmas 5.2–5.3 below.

Lemma 5.2. There exist constants C2 > 0, h1 > 0 and a slowly varying function L5 such
that for any h ∈ (0, h1) and n with 1 ≤ ‖n‖ ≤ 1/F(0, h), one has

Zn,h ≤

{
C2 L(‖n‖)−1 ‖n‖−(2−α) if α ∈ (0, 1) ,

L5(‖n‖) ‖n‖−1/min(α,2) if α > 1 ;
(5.15)

where Zn,h is the partition function of the homogeneous model with parameter h.

When α = 1, the upper bound Zn,h ≤ L5(1/‖n‖) ‖n‖−1 holds for 1 ≤ ‖n‖ ≤ F(0, h)−(1−ε2).

This lemma implies that Zn,h remains of the same order as Zn,0 as long as n does
not exceed the correlation length 1/F(0, h) (in the case α = 1 we added the assumption
‖n‖ ≤ F(0, h)−(1−ε2) only to avoid technicalities). Then we have by Jensen’s inequality
that Ai ≤ (EZq

i )η = (Zi ,h)η, therefore Lemma 5.2 gives us a first bound on Ai valid for
all i not too large.

When i is of greater order, we can obtain an improved bound on Ai as soon as
P 6= P±x for all x > 0.

Lemma 5.3. Assume that P 6= P±x for all x > 0. If ε has been fixed small enough, then
there exist some constants C3, C4, C5 > 0 such that for any k(1−ε2) ≤ ‖n‖ ≤ 2k, and for h
defined as in (5.9), one has

An ≤
{
C3‖n‖−(2−α+ εC4)η if α ∈ (1/2, 1],

C3‖n‖−(α+ εC5)η if α > 1.
(5.16)

We postpone the proof of Lemma 5.2 to Appendix A (because it only concerns the
homogeneous gPS model), and we prove Lemma 5.3 later in this section. We now have
all the tools we need to finish the proof. Fix ε > 0 sufficiently small for Lemma 5.3 to
apply, then define η depending on α > 1/2.

Case α ∈ (1/2, 1). Choose η such that

max

(
4

4 + εC4
,

4− 2ε2

4− 2ε2 + ε2α
,

2

2 + α
,

1

2− α

)
< η < 1 . (5.17)
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In particular (2 + α)η > 2 so (5.12) and (5.14) hold and we only have to control the sum
S defined in (5.14). We introduce the notation uk := k(1−ε2), and we part the sum in two:

S := S1 + S2 :=
∑
i≺k ,
‖i‖≥uk

L4(k − i (2))

(k − i (2))(2+α)η−2
Ai +

∑
i≺k ,
‖i‖<uk

L4(k − i (2))

(k − i (2))(2+α)η−2
Ai . (5.18)

To bound S1, we use Lemma 5.3 to estimate Ai .

S1 ≤
∑
i≺k ,
‖i‖≥uk

L4(k − i (2))

(k − i (2))(2+α)η−2

C3

‖i‖(2−α+εC4)η

≤
k−1∑

i(2)=0

L4(k − i (2))

(k − i (2))(2+α)η−2

C6

(max(i (2), uk))(2−α+εC4)η−1
,

(5.19)

where we used (2 − α + εC4)η ≥ (2 − α)η > 1 (recall (5.17) and η > η0), and summed
over i (1). We split this sum once more according to whether i (2) ≤ k/2 or i (2) > k/2,
which gives

S1 ≤

(
k/2∑

i(2)=0

+

k−1∑
i(2)=k/2+1

)
L4(k − i (2))

(k − i (2))(2+α)η−2

C7

(max(i (2), uk))(2−α+εC4)η−1

≤ L6(k)

k(2+α)η−2

C8

k(2−α+εC4)η−2
+

L7(k)

k(2+α)η−3

C9

k(2−α+εC4)η−1
≤ L8(k)

k(4+εC4)η−4
,

(5.20)

where, in the first term we used (2− α+ εC4)η < 2 and bounded uniformly in the first
factor, and in the second we used (2 + α)η < 3 and bounded uniformly in the second
factor. Finally we have (4 + εC4)η − 4 > 0 because of (5.17), so S1 can be made small if
k is large enough (i.e. if β is small enough). Note that it is crucial here to have C4 > 0

thanks to Lemma 5.3, which relies on the assumption that P 6= P±x for all x > 0.
For S2, we bound the first factor uniformly in i (2) (note that (k − i (2)) ≥ k/2 for

‖i‖ < uk), and we estimate Ai with Lemma 5.2.

S2 ≤
L9(k)

k(2+α)η−2

∑
i≺k ,

1≤‖i‖<uk

C1

‖i‖(2−α)ηL(‖i‖)η
+

L4(k)

k(2+α)η−2
A0

≤ L10(k)

k(2+α)η−2 u
(2−α)η−2
k

+
L4(k)

k(2+α)η−2

≤ L10(k)

k(2+α)η−2+(1−ε2)((2−α)η−2)
+

L11(k)

k(2+α)η−2
,

(5.21)

where we used (2 − α)η ∈ (1, 2), and we recall uk = k(1−ε2) (note that we had to write
separately the term i = 0). The exponent in the denominator of the first term can be
written (4 − 2ε2 + ε2α))η − 4 + 2ε2 which is positive because of (5.17), and the other
exponent is also positive. Thus S2 is also small for k large (i.e. β small).

Therefore, there is some βε > 0 such that for any β ∈ (0, βε), S ≤ 1/3. Thereby
ρ1 + ρ2 + ρ3 ≤ 1 for our choice of k and η. Applying Lemma 5.1, this concludes the proof
of Theorem 2.3 in the case α ∈ (1/2, 1).

Case α > 1. This is very similar to the previous case. Choose η such that

max

(
3

2 + α
,

1

α+ εC5
,

4− 2ε2

2 + α+ 1−ε2
min(α,2)

)
< η < 1 . (5.22)
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The first two terms in the maximum are obviously strictly smaller than 1; regarding the
third one, one should first notice that 2− 1

min(α,2) is strictly smaller than α (it is obvious if

α ≥ 2, and follows from (α− 1)2 > 0 if 1 < α < 2). This implies (1− ε2)(2− 1
min(α,1) ) < α,

which is equivalent to 4 − 2ε2 < 2 + α + (1−ε2)
min(α,2) , thus η is well defined. Moreover

(2 + α)η > 2 so (5.12) and (5.14) hold again and we only have to control S.

As in the case α ∈ (1/2, 1), we split it according to ‖i‖ ≥ uk := k(1−ε2) and ‖i‖ < uk
to obtain (5.18). We bound S1 with Lemma 5.3.

S1 ≤
∑
i≺k ,
‖i‖≥uk

L4(k − i (2))

(k − i (2))(2+α)η−2

C3

‖i‖(α+εC5)η

≤

(
k/2∑

i(2)=0

+

k−1∑
i(2)=k/2+1

)
L4(k − i (2))

(k − i (2))(2+α)η−2

C10

(max(i (2), uk))(α+εC5)η−1

≤ L12(k)

k(2+α)η−2

C11

k(α+εC5)η−2
+

L13(k)

k(2+α)η−3

C12

k(α+εC5)η−1
≤ L14(k)

k(2+2α+εC5)η−4
,

(5.23)

where we used (2 +α)η > 3 and (α+ εC5)η > 1 to estimate the sums, and the last bound
goes to 0 as k →∞ because (2 + 2α+ εC5)η > 4.

For S2, we bound the first factor uniformly in i (2) and estimate Ai with Lemma 5.2.

S2 ≤
L15(k)

k(2+α)η−2

∑
i≺k ,

1≤‖i‖<uk

L16(‖i‖)
‖i‖η/min(α,2)

+
L4(k)

k(2+α)η−2
A0

≤ L17(k)

k(2+α)η−2 u
η/min(α,2)−2
k

+
L4(k)

k(2+α)η−2

≤ L17(k)

k(2+α)η−2+(1−ε2)(η/min(α,2)−2)
+

L18(k)

k(2+α)η−2
.

(5.24)

The exponent in the denominator of the first term can be written
(
2 + α+ 1−ε2

min(α,2)

)
η −

(4 − 2ε2), which is positive. Finally S2 vanishes too as k → ∞, and this concludes the
proof of Theorem 2.3 in the case α > 1 with Lemma 5.3.

Case α = 1. Choose η such that

max

(
2

3
,

4

4 + εC4

)
< η < 1 . (5.25)

We have (2 + α)η = 3η > 2 again, so we only have to control S, which we split it again in
S1 + S2 as in (5.18). First we control S1 with Lemma 5.3.

S1 ≤
∑
i≺k ,
‖i‖≥uk

L4(k − i (2))

(k − i (2))3η−2

C3

‖i‖(1+εC4)η

≤

(
k/2∑

i(2)=0

+

k−1∑
i(2)=k/2+1

)
L4(k − i (2))

(k − i (2))3η−2

C13

(max(i (2), uk))(1+εC4)η−1

≤ L19(k)

k3η−2

C14

k(1+εC4)η−2
+
L20(k)

k3η−3

C15

k(1+εC4)η−1
≤ L21(k)

k(4+εC4)η−4
,

(5.26)
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and this sum decays because of (5.25). Then we control S2 with Lemma 5.2.

S2 ≤
∑
i≺k ,

1≤‖i‖<uk

L4(k − i (2))

(k − i2)3η−2

L5(‖i‖)
‖i‖

+
L4(k)

k3η−2
A0

≤
uk∑
i2=0

L4(k − i (2))

(k − i2)3η−2
C16 log(uk) +

L4(k)

k3η−2
≤ L22(k)

k3η−2
,

(5.27)

so S2 vanishes too as k →∞. This concludes the proof of Theorem 2.3 for α = 1.

5.2 Fractional moment estimate: proof of Lemma 5.3

We prove Lemma 5.3 via a change of measure procedure. Even though we obtain the
same estimate on the fractional moment in both cases m1 6= 0 and m1 = 0, m4 > m2

2, we
have to handle them separately and with different values of h.

Case m1 6= 0 For any n ∈ N2, let us define a new probability measure by tilting both
sequences (ω̂i)i≤n(1) , (ω̄i)i≤n(2) by some δ ∈ (−δ0, δ0):

dPn,δ

dP
(ω) =

eδ
∑n(1)

i1=1 ω̂i1+δ
∑n(2)

i2=1 ω̄i2

Q(δ, 0)‖n‖/2
, (5.28)

where
Q(δ, β) := E

[
eβ ω1+δ ω̂1+δ ω̄1

]
. (5.29)

It is well-defined for β ∈ [0, β1) and δ ∈ (−δ0, δ0), for some β1, δ0 > 0, because

Q(δ, β) ≤ E
[
e(β+2|δ|) max(|ω1|, ω̂1, ω̄1)

]
≤ E

[
e(β+2|δ|)|ω1|

]
+ 2E

[
e(β+2|δ|)ω̂1

]
≤ E

[
e(β+2|δ|)(ω̂2

1+ω̄2
1)/2

]
+ 2E

[
e(β+2|δ|)(ω̂2

1+1)
]
<∞ ,

where we used |ω1| ≤ 1
2 (ω̂2

1 + ω̄2
1) and ω̂1 ≤ ω̂2

1 +1 for all ω̂1, ω̄1 ∈ R. Recall An = E
[(
Zq
n

)η]
with η ∈ (0, 1). Using Hölder’s inequality, we write for any n ∈ N2, δ ∈ (−δ0, δ0),

An = E
[(
Zq
n

)η]
= En,δ

[(
Zq
n

)η(dPn,δ

dP
(ω)

)−1]

≤
(
En,δ

[
Zq
n

])η(
En,δ

[(
dPn,δ

dP
(ω)

)−1/(1−η)
])1−η

=
(
En,δ

[
Zq
n

])η(
Q(δ, 0)ηQ

(
− δη/(1− η), 0

)1−η)‖n‖/2
. (5.30)

Using a Taylor expansion of Q(δ, 0) = E[eδ ω̂1 ]2 as δ → 0 (which we will detail below
in (5.34)), we have

Q(δ, 0)ηQ
(
− δη/(1− η), 0

)1−η
= 1 + δ2(m2 −m2

1)
η

1− η
+O(|δ|3) , (5.31)

where m2 −m2
1 = Var(ω̂1) > 0 (otherwise disorder is constant a.s.), so this expression

is bounded by exp(C17 δ
2) for some C17 > 0, uniformly in δ ∈ (−δ1, δ1) for some δ1 > 0.

Therefore,
An ≤

(
En,δ

[
Zq
n

])η
exp

(
C17 δ

2‖n‖/2
)
. (5.32)

We fix right away |δ| := ‖n‖−1/2 > 0, so that the exponential is bounded by a constant —
the sign of δ will be determined below.
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Let us now compute En,δ[Z
q
n ], and estimate it with our choice of δ. Using Fubini’s

theorem, one has

En,δ

[
Zq
n

]
= E

[
En,δ

[
e
∑

i∈J1,nK(βωi−λ(β)+h)1{i∈τ}
]
1{n∈τ}

]

= EE

[
e(−λ(β)+h)|τ∩J1,nK|e

∑
i∈τ∩J1,nK βωi

n(1)∏
i1=1

eδ ω̂i1

Q(δ, 0)1/2

n(2)∏
i2=1

eδ ω̄i2

Q(δ, 0)1/2
1{n∈τ}

]

= E

[
e(−λ(β)+h)|τ∩J1,nK|

∏
i∈τ∩J1,nK

E
[
eβωi+δω̂i(1)

+δω̄
i(2)
]

Q(δ, 0)

×
∏

i1≤n(1),

i1 /∈τ (1)

E[eδ ω̂i1 ]

Q(δ, 0)1/2

∏
i2≤n(2),

i2 /∈τ (2)

E[eδ ω̄i2 ]

Q(δ, 0)1/2
1{n∈τ}

]

where we used that ω̂i, ω̄j , i, j ∈ N are independent variables. Noticing that the factors
with i1 /∈ τ (1), i2 /∈ τ (2) simplify to 1, and recalling eλ(β) = Q(0, β), this finally gives

En,δ

[
Zq
n

]
= E

[(
eh

Q(δ, β)

Q(δ, 0)Q(0, β)

)|τ∩J1,nK|
1{n∈τ}

]
. (5.33)

Now we have to estimate Frac(δ, β) := Q(δ,β)
Q(δ,0)Q(0,β) as β, δ → 0 (recall that they are related

to h by (5.9), (5.10) and |δ| = ‖n‖−1/2, with k1−ε2 ≤ ‖n‖ ≤ 2k). A Taylor expansion of
Q(δ, β) to the second order in (δ, β), combined with the finite exponential moment, gives

Q(δ, β) = 1 + βm2
1 + 2δm1 +

1

2
β2m2

2 + 2δβm2m1 + δ2(m2 +m2
1) +O( ·3) , (5.34)

with O( ·3) := O(β3) +O(β2δ) +O(βδ2) +O(δ3). This leads to the following expansion:

Frac(δ, β) = 1 + δβm1(m2 −m2
1) +O(βp) +O(δ2) + o(δβ) , (5.35)

where we can push the expansion to any order p ∈ N in β because Frac(0, β) = 1 for
all β ≥ 0 and Frac(δ, β) is C∞ on (−δ0, δ0)× [0, β1). Recall that m2 −m2

1 > 0 and that we
are in the case m1 6= 0. Let us now prove that, with our choice of δ, the order δβ is
dominating in (5.35), and deduce a bound on En,δ[Z

q
n ].

Case α ∈ (1/2, 1]: Because of our assumptions k(1−ε2) ≤ ‖n‖ ≤ 2k, (5.9), (5.10) and
Theorem 1.2, and because we can bound the slowly varying function from Theorem 1.2
by hε

3/2 ≤ Lα(1/h) ≤ h−ε
3/2

for h sufficiently small, there exists some βε > 0 such that
for any β < βε,

h
1
2 ( 1
α+ε3/2) ≤ |δ| ≤ h

1
2 ( 1
α−ε

3/2)(1−ε2),

β
1

2α−1 + 1
2α ε+c1 ε

3/2

≤ |δ| ≤ β
1

2α−1 + 1
2α ε−c1 ε

3/2

, (5.36)

for some constant c1 > 0 provided that ε was taken sufficiently small. Notice that
δ decays faster than β (especially if α is close to 1/2), so δ2 � |δ|β. Moreover we
can fix p sufficiently large (depending on α) such that βp � |δ|β. Finally, letting δ :=

−sign(m1)‖n‖−1/2, there exist a constant c > 0 such that for any β < βε, we have

Frac(δ, β) ≤ 1− c|δ|β ≤ e−c|δ|β . (5.37)

Eventually, noticing that h = β
2α

2α−1 +ε � β
2α

2α−1 + 1
2α ε+c1 ε

3/2

≤ |δ|β if ε is sufficiently small,
and recalling |δ| = ‖n‖−1/2, we can bound (5.33) from above by

En,δ

[
Zq
n

]
≤ E

[(
e−c

′‖n‖−1/2β
)|τ∩J1,nK|

1{n∈τ}

]
, (5.38)
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for some c′ > 0.

Case α > 1: This is very similar to the previous case, with simpler bounds because
the slowly varying function from Theorem 1.2 is replaced by a constant. So putting
together (5.10), Theorem 1.2 and our assumption k(1−ε2) ≤ ‖n‖ ≤ 2k, we deduce that

there exist c1, c2 > 0 and βε > 0 such that for any β < βε we have c1h
1
2 ≤ |δ| ≤ c2h

1−ε2
2 .

Recalling (5.9), this yields

c′1 β
1+ ε

2 ≤ |δ| ≤ c′2 β
1
2 (2+ε)(1−ε2) ≤ c′2β1+ ε

4 . (5.39)

Here again |δ| � β, and we can fix p ∈ N sufficiently large so that βp � |δ|β. Fixing
δ := −sign(m1)‖n‖−1/2 > 0, there is a constant c′′ > 0 such that for any β < βε, we have
Frac(δ, β) ≤ e−c

′′|δ|β. Finally we have |τ ∩ J1,nK| ≤ ‖n‖ ≤ C18h
−1 (recall Theorem 1.2),

so eh|τ∩J1,nK| is bounded uniformly by some constant. Thus:

En,δ

[
Zq
n

]
≤ C19E

[(
e−c

′′‖n‖−1/2β
)|τ∩J1,nK|

1{n∈τ}

]
. (5.40)

In both cases (5.38)–(5.40), we recognize the partition function of a homogeneous
gPS model with parameter −c‖n‖−1/2β, for some c > 0. The following result (proven in
Appendix A) gives an estimate of this partition function.

Lemma 5.4. For any α > 0, fix some 0 < α− < α. Then there exist C20, C21 > 0 and
u0 > 0 such that for any u ∈ (0, u0) and n ∈ N2, one has

Zn,−u ≤ C20
K(‖n‖)
u2

+ P(n ∈ τ ) e−C21u‖n‖min(α−,1)
. (5.41)

We now conclude the proof of Lemma 5.3 by applying this result with u := c‖n‖−1/2β

(which decays to 0 as β ↘ 0), separating again the cases α ∈ (1/2, 1] and α > 1.

Case α ∈ (1/2, 1]. We apply Lemma 5.4 to (5.38). Notice that, thanks to (5.36), we have

u ‖n‖α− ≥ β2
α−α−
2α−1 − ε

2α−−1

2α + c1 ε
3/2

. (5.42)

Provided that ε is sufficiently small (so that ε 2α−1
2α > 2c1 ε

3/2), we can choose α− suffi-
ciently close to α (depending on ε) so that the exponent is negative; thus u‖n‖α− goes to
infinity as a power of β. In particular the second term in (5.41) decays much faster than
the first one (which decays at most polynomially in β, recall (5.36)). Hence, Lemma 5.4
and (5.36) give for any β sufficiently small,

Zn,−c′‖n‖−1/2β ≤ C22
K(‖n‖)
‖n‖−1 β2

≤ C23

‖n‖2−α+εC24
. (5.43)

Recollecting (5.32) and (5.38), this finally proves the lemma in the case α ∈ (1/2, 1].

Case α > 1. We apply Lemma 5.4 to (5.40). Recalling (5.39), we notice that u‖n‖ ≥
C25β

−ε/4 diverges as a power of β: the second term in (5.41) decays again much faster
than the first one as β ↘ 0, so Lemma 5.4 and (5.39) give for any β sufficiently small,

Zn,−c′′‖n‖−1/2β ≤ C26
K(‖n‖)
‖n‖−1 β2

≤ C27

‖n‖α+εC28
. (5.44)

With (5.32) and (5.40), this concludes the proof of the lemma in the case α > 1.

Case m1 = 0, m4 > m2
2 When m1 = 0, one could push the expansion in (5.35) to

the third order to find a dominating term δβ2m2
3. Assuming m3 6= 0 and adjusting

the definition of h (thus of δ), this would prove the fractional moment estimates with
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h = βmax( 4α
2α−1 ,4)+ε, hence a shift of the critical point of order βmax( 4α

2α−1 ,4)+ε. However
when m1 = 0, we can define another change of measure which yields the same estimates
on An without the additional assumption m3 6= 0. Indeed, let us define for all n ∈ N2 and
δ ∈ [0, δ0),

dP′n,δ
dP

(ω) =
e−δ

∑n(1)

i1=1 ω̂
2
i1
−δ

∑n(2)

i2=1 ω̄
2
i2

R(δ, 0)‖n‖/2
, (5.45)

where we define

R(δ, β) := E
[
eβ ω1−δ ω̂2

1−δ ω̄
2
1
]
. (5.46)

This change of measure is a quadratic i.i.d tilt of the sequences ω̂ and ω̄. Similarly
to (5.29), it is well-defined for β ∈ [0, β1) and δ ∈ [0, δ0), for some β1, δ0 > 0 (notice that
here we directly choose a non-positive tilt). As in the previous case, Hölder’s inequality
yields for any n ∈ N2,

An ≤
(
E′n,δ

[
Zq
n

])η(
R(δ, 0)ηR

(
− δη/(1− η), 0

)1−η)‖n‖/2
. (5.47)

Moreover a Taylor expansion of R(δ, β) to the third order in (δ, β) yields

R(δ, β) = 1− 2δm2 +
β2m2

2

2
+ δ2(m4 +m2

2) +
β3m2

3

6

− β2δm2m4 + βδ2m2
3 − δ3(

m6

3
+m2m4) +O( ·4) ,

(5.48)

with O( ·4) := O(β4) +O(β3δ) + · · ·+O(δ4), where we used m1 = 0. Thus,

R(δ, 0)ηR
(
− δη/(1− η), 0

)1−η
= 1 + δ2(m4 −m2

2)
η

1− η
+O(δ3) , (5.49)

which is bounded by exp(C29 δ
2) for some C29 > 0, uniformly in δ ∈ (−δ1, δ1) (recall that

we assumed m4 > m2
2). Therefore, letting δ := ‖n‖−1/2 > 0, we have

An ≤ C30

(
E′n,δ

[
Zq
n

])η
, (5.50)

and similarly to (5.33), we write with a direct computation

E′n,δ
[
Zq
n

]
= E

[(
eh

R(δ, β)

R(δ, 0)R(0, β)

)|τ∩J1,nK|
1{n∈τ}

]
. (5.51)

A Taylor expansion of Frac2(δ, β) := R(δ,β)
R(δ,0)R(0,β) to the third order in (δ, β) yields

Frac2(δ, β) = 1− δβ2m2(m4 −m2
2) +O(βp) +O(δβ3) +O(δ2β) +O(δ3) , (5.52)

where we can push the expansion to any order p ∈ N in β. Notice that this is very similar
to (5.35) above, with a leading term of order βδ2 instead (and m2(m4 −m2

2) > 0 under
our assumptions). By duplicating all arguments above, and recalling k(1−ε2) ≤ ‖n‖ ≤
2k, (5.10), Theorem 1.2 and our specific choice of h in (5.9), we finally obtain for some
c > 0 and any α > 1/2,

E′n,−‖n‖−1/2

[
Zq
n

]
≤ E

[(
e−c‖n‖

−1/2β2)|τ∩J1,nK|
1{n∈τ}

]
= Zn,−c‖n‖−1/2β2 . (5.53)

Eventually, we apply Lemma 5.4 (with u = c‖n‖−1/2β2) to estimate this homogeneous
partition function, and we conclude the proof by recollecting (5.50) as in the case m1 6= 0

(we do not write the details again).
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6 Disorder relevance: shift of the critical point when P = P±x

In this section we prove the lower bound in Theorem 2.5 — recall that we assume
m1 = 0 and m4 = m2

2, so P = P±x for some x > 0 — and in particular we discuss how the
estimate of the fractional moment (i.e. Lemma 5.3) have to be adapted. Notice that we
can assume P = P±1, that is x = 1, without loss of generality — one only has to replace
β with βx2 in the partition function.

We can reproduce exactly the first part of the proof above, namely the coarse-graining
procedure whose core is Lemma 5.1, and we can use Lemma 5.2 as it is. On the other
hand, the change of measure argument needs important adaptation. In the case of an
i.i.d. disorder, what plays the role of Lemma 5.3 is [5, Prop. 4.2]: there, the estimates
of fractional moments Ai use an i.i.d. tilt of the disorder, but only along an extended
diagonal, i.e.

Jn :=
{
i ∈ J1,nK ; |i (1) − i (2)| ≤ 2`n

}
. (6.1)

The width `n is chosen depending on α > 1, so that the renewal process τ is very unlikely
to deviate from the diagonal by more than `n (see [5, Thm. A.5], or [6, Thm. 4.2] for a
more general statement):

`n :=

{
(n(1))(1+ε2)/α if α ∈ (1, 2] ,

C1

√
n(1) logn(1) if α > 2 ,

(6.2)

(notice that |Jn | ≤ 2n(1)`n � n(1)n(2) when n(1) ≈ n(2)). In our setting the non-
independent disorder adds some technicalities to this method, but they can be handled
if we restrain ourselves to P±1. We prove the following result, which plays the role of
Lemma 5.3 in the case P = P±1.

Proposition 6.1. Assume α > 1, P = P±1, recall k = 1/F(0, h), and define `n as in (6.2).
Then there exist h0 > 0 and L1 such that for any h ∈ (0, h0) and

√
k ≤ n(1) ≤ k,

n(1) ≤ n(2) ≤ n(1) + `n, one has

An ≤
{
L1(k) k−(1+ε2)η/α if α ∈ (1, 2] ,

L1(k) k−(α−1)η/2 if α > 2 .
(6.3)

Note that these are exactly the same estimates on An as in [5, Prop. 4.2]. Once
plugged in the computations of ρ1, ρ2 and ρ3 from Lemma 5.1, they give the same lower
bound for the shift of the critical point as in [5, Thm 1.4], which is

hc(β) ≥
{
β

2α
α−1 +ε if α ∈ (1, 2] ,

β4| log β|−6 if α > 2 .
(6.4)

This proves the left inequality in Theorem 2.5. We do not write the details here, because
once we have the estimates on An from Proposition 6.1, the computations of ρ1, ρ2 and
ρ3 are the same as in [5] and do not depend on the setting of disorder.

Proof of Proposition 6.1. This follows the same scheme as [5, Prop. 4.2]. We define the
same change of measure on Jn as [5, (4.18)], that is

dPn,δ

dP
(ω) :=

∏
i∈Jn e

−δωi

QJn (δ)
, where QJn (δ) := E

[ ∏
i∈Jn

e−δωi

]
. (6.5)

Applying Hölder’s inequality to An similarly to (5.47), we have

An ≤
(
En,δ

[
Zq
n

])η(
En,δ

[(
dPn,δ

dP
(ω)

)−1/(1−η)
])1−η

=
(
En,δ

[
Zq
n

])η
QJn (δ)η QJn

(
− δη/(1− η)

)1−η
. (6.6)
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Let us fix δ := (n(1)`n)−
1
2 (1+ε3) > 0 — this is the same as in [5] where we added the

power (1 + ε3) to avoid technicalities. We claim the following:

Lemma 6.2. There exists C2 > 0 and δ1 > 0 such that if δ2n(1)`n ≤ δ1, then

1 ≤ QJn(δ) ≤ C2 . (6.7)

Proof of Lemma 6.2. The lower bound follows directly from Jensen’s inequality, so let us
focus on the upper bound. For all 1 ≤ i ≤ n(1), we define

Jn(i) := {j ∈ J1,n(2)K; (i, j) ∈ Jn} , and σi = σi(ω̄) :=
∑

j∈Jn(i)

ω̄j , (6.8)

in particular |σi| ≤ |Jn(i)| ≤ 2`n . Then, computing first the expectation conditionally on
ω̄, we have

QJn (δ) = E

[
exp

(
− δ

n(1)∑
i=1

ω̂i σi(ω̄)
)]

= E

[ n(1)∏
i=1

cosh
(
δ σi(ω̄)

)]
, (6.9)

where we used that ω̂ is a sequence of independent variables, is independent from ω̄,
and that E[e−xω̂i ] = cosh(−xω̂i) = cosh(x) for all x ∈ R. Notice that for all x ∈ R, one has

cosh(x) ≤ e x
2

2 : we therefore have

QJn (δ) ≤ E

[
exp

( n(1)∑
i=1

δ2σ2
i

2

)]
≤

n(1)∏
i=1

E

[
exp

(
1

2
n(1)δ2σ2

i

)]1/n(1)

(6.10)

by Cauchy-Schwarz inequality. Here σi is a sum of |Jn(i)| i.i.d. bounded variables, so
σi√
|Jn(i)|

converges in distribution to some standart gaussian Z ∼ N (0, 1) as |Jn(i)| → ∞.

This implies

QJn (δ) ≤ C3 + C ′3E
[

exp
(
n(1)δ2|Jn(i)|Z2

)]
(6.11)

uniformly in n (where C3 handles the indexes i for which |Jn(i)| is small). Noticing that
n(1)δ2|Jn(i)| ≤ 2 δ2n(1)`n ≤ 2δ1, and that Z2 has some finite exponential moments, this
concludes the proof of the lemma.

Note that δ2n(1)`n → 0 as n(1) →∞, so this lemma implies that the last two factors
in the right-hand side of (6.6) are uniformly bounded. It remains to deal with the
expectation in (6.6). One has

En,δ

[
Zq
n

]
= E

[
En,δ

[
e
∑

i∈J1,nK(βωi−λ(β)+h)1{i∈τ}
]
1{n∈τ}

]
= E

[
eh|τ∩J1,nK|

QJn (δ)
E

[
e−λ(β)|τ∩J1,nK|

∏
i∈J1,nK

eβωi1{i∈τ}−δωi1{i∈Jn}

]
1{n∈τ}

]
.

(6.12)

Under the assumptions of Proposition 6.1 we have |τ ∩ J1,nK| ≤ ‖n‖ ≤ C4h
−1 (recall

Theorem 1.2), so this implies that eh|τ∩J1,nK| is bounded by some uniform constant (and
so is QJn (δ)−1).

Let us fix a realization of τ with n ∈ τ , and let Bβ,δn,τ be the expectation over P
in (6.12). Recall the definition of Jn(i) and σi in Lemma 6.2, and define

σ̄i = σ̄i(ω̄) :=

n(2)∑
j=1

ω̄j1{(i,j)∈τ} , (6.13)
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and notice that |σ̄i| = 1 if i ∈ J1,n(1)K ∩ τ (1), and σ̄i = 0 otherwise. Again, as for QJn ,
computing the expectation first conditionally on ω̄ gives

Bβ,δn,τ = E

[
e−λ(β)|τ∩J1,nK| exp

( n(1)∑
i=1

ω̂i(βσ̄i(ω̄)− δσi(ω̄))
)]

= E

[
e−λ(β)|τ∩J1,nK|

n(1)∏
i=1

cosh
(
βσ̄i(ω̄)− δσi(ω̄)

)]
.

(6.14)

Notice that λ(β) = log cosh(β) when P = P±1. Using that cosh is even and that cosh 0 = 1,
we get that

eλ(β)|τ∩J1,nK| =

n(1)∏
i=1

cosh(β1{i∈τ (1)}) =

n(1)∏
i=1

cosh(βσ̄i) , (6.15)

where we used that σ̄ = ±1 when it is not equal to 0. Then (6.14) becomes

Bβ,δn,τ = E

[ n(1)∏
i=1

cosh
(
βσ̄i − δσi

)
cosh(βσ̄i)

]

= E

[ n(1)∏
i=1

(
cosh(δσi)− sinh(δσi) tanh(βσ̄i)

)]
,

(6.16)

where we simply used trigonometric identities to expand cosh(βσ̄i − δσi). Notice that
sinh(δσi) tanh(βσ̄i) = sinh(δσiσ̄i) tanh(β) (because σ̄ ∈ {−1, 0, 1} and sinh, tanh are an-
tisymmetric), and recall that |δσi| � (`n/n(1))1/2 → 0 as n(1) → ∞. Therefore, some
standard Taylor expansions give for n(1) sufficiently large,

cosh(δσi) ≤ 1 + (δσi)
2,

− sinh(δσiσ̄i) ≤ −δσiσ̄i + (δσiσ̄i)
2 ≤ −δσiσ̄i + (δσi)

2.
(6.17)

Finally, for n(1) sufficiently large, one has for all ω̄ ∈ {−1, 1}N,

cosh(δσi)− sinh(δσi) tanh(βσ̄i) ≤ 1 + 2(δσi)
2 − δ tanh(β)σiσ̄i , (6.18)

(where we also used tanh(β) ≤ 1). Since all the factors in (6.16) are positive for n(1)

sufficiently large, we get

Bβ,δn,τ ≤ E

[ n(1)∏
i=1

(
1 + 2(δσi)

2 − δ tanh(β)σiσ̄i
)]

≤ E
[

exp
( n(1)∑
i=1

2(δσi)
2 − δ tanh(β)σiσ̄i

)]
.

(6.19)

Let us define σ′i :=
∑
j∈Jn(i) ω̄j1{(i,j)/∈τ}, which is a small modification of σi (we removed

σ̄i if it appears in the sum in σi), so that we have

σiσ̄i = σ′iσ̄i +

( ∑
j∈Jn(i)

ω̄i1{(i,j)∈τ}

)( n(2)∑
j=1

ω̄i1{(i,j)∈τ}

)
= σ′iσ̄i + 1{∃j∈Jn(i); (i,j)∈τ}.

(6.20)

Hence, we get that

Bβ,δn,τ ≤ e−δ tanh(β)|τ∩Jn |E

[
exp

(
4

n(1)∑
i=1

δ2σ2
i

)]1/2

E

[
exp

(
− 2δ tanh(β)

n(1)∑
i=1

σ′iσ̄i

)]1/2

.

(6.21)
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where we applied Cauchy-Schwarz inequality. In the proof of Lemma 6.2 we already
showed that the second factor is bounded. We claim that the third factor is also bounded.

Lemma 6.3. There exists δ2 > 0 such that if |δ|
√
n(1)`n log(n(1)) ≤ δ2, and if β ≤ 1, then

1 ≤ E

[
exp

(
2δ tanh(β)

n(1)∑
i=1

σ′iσ̄i

)]
≤ 2 . (6.22)

We prove this Lemma at the end of this section. Since δ
√
n(1)`n log(n(1)) → 0, the

assumption of the lemma is clearly satisfied by −δ if n(1) is large enough: going back
to (6.12) (and writing tanh(β) > β/2 for small β > 0), we finally obtain

En,δ

[
Zq
n

]
≤ C5 E

[
e−δβ|τ∩Jn |/21{n∈τ}

]
, (6.23)

which is the same as [5, (4.25)]. Then we finish the proof of Proposition 6.1 by applying
[5, Lemma 4.3] and Lemma 5.4 (we do not write the details here because it is a replica
of [5]).

Proof of Lemma 6.3. The left inequality is a straight consequence to Jensen’s inequality,
so we focus on the upper bound. We introduce some notations specific to this lemma.
Let r := |τ ∩ J1,nK| and denote (al, bl) = τ l, 1 ≤ l ≤ r (in particular (ar, br) = τ r = n).
Moreover for all 1 ≤ l ≤ r, denote Jn(al) = Jcl, dlK. Then we can write

n(1)∑
i=1

σ′iσ̄i =

r∑
l=1

ω̄bl

( dl∑
j=cl

ω̄j1{(al,j)/∈τ}

)

=

r∑
l=1

ω̄bl

(min(dl,bl−1)∑
j=cl

ω̄j +

dl∑
j=max(bl+1,cl)

ω̄j

)
,

(6.24)

where we parted the sum according to indices of ω̄ before and after bl. Let us define
X0 = Y0 = 0 and for all 1 ≤ t ≤ r,

Xt :=

t∑
l=1

ω̄bl

(min(dl,bl−1)∑
j=cl

ω̄j

)
and Yt :=

t∑
l=1

ω̄bl

( dl∑
j=max(bl+1,cl)

ω̄j

)
, (6.25)

so that
∑n(1)

i=1 σ
′
iσ̄i = Xr + Yr, and by Cauchy-Schwarz inequality,

E

[
exp

(
2δ tanh(β)

n(1)+`n∑
i=−`n

σ′iσ̄i

)]
≤ E

[
exp

(
4δ tanh(β)Xr

)]1/2
E
[

exp
(
4δ tanh(β)Yr

)]1/2
.

(6.26)
We only treat the first factor, the second one being symmetric. We define F0 the trivial
σ-algebra, and for all 1 ≤ t ≤ r,

Ft := σ
(
{ω̄j , 1 ≤ j ≤ bt+1 − 1}

)
, (6.27)

with br+1 := n(2) + 1: it is then easily checked that (Xt)0≤t≤r is a (Ft)0≤t≤r-martingale.

We also define a “truncated” version of X: for all w > 0, X(w)
0 := 0 and for all 1 ≤ t ≤ r,

we set

X
(w)
t :=

t∑
l=1

ω̄bl

(min(dl,bl−1)∑
j=cl

ω̄j

)
1{∣∣∑min(dl,bl−1)

j=cl
ω̄j

∣∣≤w√`n log(n(1))
} . (6.28)
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Notice that (X
(w)
t )0≤t≤r is also a (Ft)0≤t≤r-martingale, and it has bounded increments:

|X(w)
t −X(w)

t−1| ≤ w
√
`n log(n(1)) for all 1 ≤ t ≤ r. Therefore we deduce from the Azuma-

Hoeffding inequality that for all u,w > 0,

P

(
|X(w)

r | > u
√
r`n log(n(1))

)
≤ 2 exp

(
− u2

2w2

)
. (6.29)

Moreover we have

P
(
Xr 6= X(w)

r

)
= P

(
∃ 1 ≤ l ≤ r;

∣∣∣∣min(dl,bl−1)∑
j=cl

ω̄j

∣∣∣∣ > w
√
`n log(n(1))

)

≤
r∑
l=1

P

(∣∣∣∣min(dl,bl−1)∑
j=cl

ω̄j

∣∣∣∣ > w
√
`n log(n(1))

)
,

(6.30)

so by Hoeffding’s inequality, and because |Jn(i)| ≤ 2`n and r ≤ n(1),

P
(
Xr 6= X(w)

r

)
≤ n(1) exp

(
− w2

4
log(n(1))

)
. (6.31)

We deduce from (6.31) and (6.29) that for all u,w > 0,

P

(
|Xr| > u

√
r`n log(n(1))

)
≤ 2 exp

(
− u2

2w2

)
+ n(1) exp

(
− w2

4
log(n(1))

)
, (6.32)

in particular with w2 = u
√

2√
log(n(1))

,

P

(
|Xr| > u

√
r`n log(n(1))

)
≤ (2 + n(1)) exp

(
− u

√
log(n(1))

2
√

2

)
≤ exp(−Cu),

(6.33)

where C > 0 is a constant sufficiently small such that this inequality holds for all u ≥ 1

and n(1) ∈ N. Hence, (6.33) implies that |Xr|√
r`n log(n(1))

is dominated under some coupling

by C ′ + Z, with C ′ a constant and Z an exponential random variable with parameter C.
In particular,

E
[

exp
(
4δ tanh(β)Xr

)]
≤ E

[
exp

(
4|δ|β

(
C ′ +

√
r`n log(n(1))Z

))]
, (6.34)

and this can be made arbitrarily small if |δ|β
√
r`n log(n(1)) ≤ |δ|

√
n(1)`n log(n(1)) is

small, which concludes the proof of the lemma.

A Estimates on the homogeneous gPS model

Here we prove Lemma 5.4 and Lemma 5.2.

Proof of Lemma 5.4. This Lemma is already proven for α > 1 in [5, Lemma 4.4], so we
replicate the proof here for α ∈ (0, 1] (notice that this proof follows the lines of [15,
Prop. A.2.] in the context of the homogeneous PS model).

We decompose the partition function according to the number of renewal points
until n:

Zn,−u =

‖n‖∑
j=1

e−juP
(
τ j = n

)
=

‖n‖α−∑
j=1

e−juP
(
τ j = n

)
+

‖n‖∑
j=‖n‖α−+1

e−juP
(
τ j = n

)
. (A.1)
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For the first sum, (recall α− < α ≤ 1) we use Proposition B.1 to bound P
(
τ j = n

)
by a

constant times jK(‖n‖), both for α < 1 and α = 1 (for the latter, notice that bj � ‖n‖).
We obtain

‖n‖α−∑
j=1

e−juP
(
τ j = n

)
≤ C1

K(‖n‖)
u2

‖n‖α−∑
j=1

ju2e−ju ≤ C2
K(‖n‖)
u2

, (A.2)

where we used a Riemann-sum approximation of the last sum to get that it is bounded
by a constant times

∫
R+

xe−xdx = 1 for any u ≤ u0. For the terms j > ‖n‖α− , we simply
bound j from below:

+∞∑
j=‖n‖α−+1

e−juP
(
τ j = n

)
≤ e−u‖n‖

α−
P(n ∈ τ ), (A.3)

and the proof is complete.

Proof of Lemma 5.2. We first take care of the case α ≥ 1 with very rough estimates: if
α > 1, recalling Theorem 1.2, there is some cα > 0 such that F(0, h) ∼ cαh as h↘ 0. In
particular h|τ ∩ J1,nK| is bounded uniformly in h ∈ (0, h1) and 1 ≤ ‖n‖ ≤ 1/F(0, h). Thus,

Zn,h = E[eh|τ∩J1,nK|1{n∈τ}] ≤ C3 P(n ∈ τ ) . (A.4)

Then we conclude with Proposition B.3.
If α = 1, then F(0, h) ∼ Lα(1/h)h as h ↘ 0 where Lα is slowly varying. Using the

additional assumption ‖n‖ ≤ F(0, h)−(1−ε2), h|τ ∩ J1,nK| is also bounded (it decays to 0)
and the former upper bound still holds. Then we conclude with Proposition B.3.

Those rough estimates do not apply when α ∈ (0, 1), since we do not have uniform
bounds on h|τ ∩ J1,nK|. We follow the line of proof of [15, Lem. 4.1] for the PS model.
A first step in the proof consists in dealing with the indicator function in the partition
function, to compare it with its free counterpart, see (A.9) below. Let us define

Tn :=
{
i ∈ J1,nK ; ‖i‖ ≤ 1

2‖n‖
}
, (A.5)

the lower left half of the rectangle J1,nK, where we recall that ‖ · ‖ is the L1 norm on N2.
Because, conditionally on n ∈ τ , the time-reversed process τ̃ in J1,nK \ Tn starting from
n has same law as τ in Tn , the partition function is bounded with a Cauchy-Schwarz
inequality by

Zn,h = E
[
eh |τ∩J1,nK|∣∣n ∈ τ]P(n ∈ τ) ≤ E

[
e2h |τ∩Tn |

∣∣n ∈ τ]P(n ∈ τ) , (A.6)

(if ‖n‖ is even the anti-diagonal {‖i‖ = ‖n‖/2} is counted twice, but the upper bound
still holds). Let us define Xn := sup{i ∈ Tn ∩ τ} the last renewal point in Tn (we take the
supremum for the natural order on τ ⊂ N2: recall that τ is strictly increasing on both
coordinates). Because |τ ∩ Tn | and 1{n∈τ} are independent conditionally to {Xn = i},
we can write:

E
[
e2h|τ∩Tn |

∣∣∣n ∈ τ] =
∑
i∈Tn

E
[
e2h|τ∩Tn |

∣∣∣Xn = i
]
P
(
Xn = i

∣∣n ∈ τ), (A.7)

then we can use the following Lemma, which is proven afterwards.

Lemma A.1. Assume α ∈ (0, 1). There exists C4 > 0 such that for any n ∈ N and i ∈ Tn,

P
(
Xn = i , n ∈ τ

)
≤ C4 L(‖n‖)−1 ‖n‖−(2−α)P

(
Xn = i

)
. (A.8)
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Thanks to this Lemma and (A.7), the inequality (A.6) becomes

Zn,h ≤
C4 L(‖n‖)−1

‖n‖2−α
E
[
e2h |τ∩Tn |

]
, (A.9)

so Lemma 5.2 will be proven once we show that the above expectation is bounded by a
constant, uniformly for ‖n‖ ≤ 1/F(0, h). Notice that ‖τ‖ = (‖τ i‖)i≥1 is a renewal process
on N, so we may write the upper bound

E
[
e2h |τ∩Tn |

]
≤ E

[
exp

(
2h

‖n‖/2∑
i=1

1{i∈‖τ‖}

)]
, (A.10)

which is the partition function of a homogeneous PS model with underlying univariate
renewal ‖τ‖, which easily verifies P(‖τ 1‖ = k) ∼ L(k)k−(1+α) as k → +∞. The right side
of (A.10) has already been studied in [15, Lemma 4.1] when α ∈ (0, 1), and we therefore
get that the expectation is bounded by a constant uniformly in ‖n‖ ≤ 1/F(0, h).

Proof of Lemma A.1. Fix n, i ∈ N2. Recall and the definitions of Tn in (A.5) and Xn , and
that we assumed α ∈ (0, 1). We write:

P
(
Xn = i , n ∈ τ

)
= P

(
i ∈ τ

)
P
(
‖τ 1‖ > 1

2‖n‖ − ‖i‖ , n − i ∈ τ
)

= P
(
i ∈ τ

) ∑
j∈Qn

i

P
(
τ 1 = j

)
P
(
n − i − j ∈ τ

)
,

(A.11)

with

Qn
i :=

{
j ∈ N2 ; j 4 n − i , ‖j‖ > 1

2‖n‖ − ‖i‖
}
. (A.12)

Then, we can use Proposition B.2 to get that P
(
n − i − j ∈ τ

)
is bounded by a constant

times L(‖n − i − j‖)−1‖n − i − j‖−(2−α). We get that the sum in (A.11) is bounded by a
constant times ∑

j∈Qn
i

P
(
τ 1 = j

)
L(‖n − i − j‖)−1‖n − i − j‖−(2−α)

≤ C5L(‖n‖)−1‖n‖−(2−α)
∑

j∈Qn
i ,‖j‖≤‖n‖/4

P
(
τ 1 = j

)
+ C5L(‖n‖)‖n‖−(2+α)

∑
`≤‖n‖

L(‖`‖)−1‖`‖−(2−α) ,

where we decomposed the sum according to whether ‖j‖ ≤ ‖n‖/4 or not. We used that
if ‖j‖ ≤ ‖n‖/4 then ‖n − i − j‖ ≥ ‖n‖/4, and if ‖j‖ > ‖n‖/4 then we can bound P(j ∈ τ )

uniformly thanks to (1.1), and we wrote ` := n − i − j .

Using that the last sum above is bounded by a constant times L(‖n‖)−1‖n‖α, we
therefore get that (A.11) is bounded by a constant times

P(i ∈ τ )L(‖n‖)−1‖n‖−(2−α)
(
P
(
‖τ 1‖ > 1

2‖n‖ − ‖i‖
)

+ L(‖n‖)‖n‖−α
)

≤ C6L(‖n‖)−1‖n‖−(2−α)P(i ∈ τ )P
(
‖τ 1‖ > 1

2‖n‖ − ‖i‖
)

≤ C6L(‖n‖)−1‖n‖−(2−α)P(Xn = i) ,

which concludes the proof.
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B Some properties of bivariate renewals

We provide here some estimates on the bivariate renewal τ that we use (recall its
inter-arrival distribution (1.1)). They can be found in [5, Appendix A] or in [3] in a
more general setting, and rely on the fact that τ is in the domain of attraction of a
min(α, 2)-stable distribution. We define the scaling sequence an,

an := ψ(n)n1/min(α,2) , (B.1)

where ψ is some slowly varying function (we do not detail it here, see [3, 5]; notice that
if α > 2, ψ is a constant). We also define the recentering sequence bn,

bn := 0 if α ∈ (0, 1), bn := nµ(an) if α = 1, bn := nµ if α > 1. (B.2)

Here µ(x) = E[τ
(1)
1 1{τ (1)

1 ≤ x}
] is the truncated moment, and µ = limx→+∞ µ(x). When

α = 1, notice that either µ < +∞ or µ(x)→ +∞ as a slowly varying function.

Proposition B.1 ([3], Thm. 2.4). There exists some C1 > 0 such that

P
(
τ j = n + bj1

)
≤ C1 jP(τ 1 = n) , (B.3)

for any j ∈ N and n ∈ N2 such that ‖n‖ ≥ aj .
Proposition B.2 ([3], Thms. 3.1–4.1). Assume α ∈ (0, 1). There is some constant C > 0

such that for all n ∈ N2,

P(n ∈ τ ) ≤ CL(‖n‖)−1‖n‖−(2−α) . (B.4)

Note that this upper bound is sharp when n(1) and n(2) are of the same order (i.e.
when n is close to the diagonal: we refer to [36, Cor. 3-B] for a precise statement).

Proposition B.3 ([3], Thms. 3.3–3.4 and 4.2–4.3). Assume α ≥ 1, then there is a constant
C > 0 such that for any n ∈ N2,

P(n ∈ τ ) ≤ C

µ(n)an/µ(n)
, (B.5)

with n = min(n(1),n(2)). When α > 1, µ(n) can be replaced by 1.

We stress that this upper bound is sharp when n is close to the diagonal, we refer
to [3, Thms. 3.3–3.4] for the precise statements. Also, notice that n 7→ µ(n)an/µ(n) is
regularly varying with index 1/min(α, 2).

Let us also recall some results on intersections of renewals, either univariate or
bivariate.

Proposition B.4.

1. Let τ be a renewal in N, with P(τ1 = n) = L(n)/n1+α, for α > 0 and L slowly varying.
Let τ ′ be an independent copy of τ . Then τ ∩ τ ′ is also a renewal process, and it is
terminating a.s. if

∑
n≥1

n2α−2

L(n)2 <∞ (in particular α ≤ 1/2 is necessary, while α < 1/2

is sufficient). Otherwise it is persistent a.s..

2. Let τ be a renewal in N2, with inter-arrival distribution as in (1.1). Let τ ′ be an
independent copy of τ . Then τ ∩ τ ′ is also a renewal process, and it is terminating
a.s. if α < 1, or if α = 1 and

∑
n≥1

1
nL(n)µ(n) <∞. Otherwise it is persistent a.s..

This comes from the following observation: τ ∩ τ ′ (resp. τ ∩ τ ′) is a univariate (resp.
bivariate) renewal process, so |τ ∩ τ ′| (resp. |τ ∩ τ ′|) is either infinite a.s., or a finite
geometric variable. So one only has to estimate E[|τ ∩ τ ′|] (resp. E[|τ ∩ τ ′|]) to determine
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if the intersection is persistent or terminating. For univariate processes, those estimate
can be obtained thanks to the asymptotic behavior of the renewal mass function P(i ∈ τ)

(see [16] if α ∈ (0, 1), [17] if α = 1, the case α > 1 being simply the renewal theorem).
Regarding the bivariate case, it has recently been treated in [5, Prop. A.3 and Rem. A.7],
thanks to the estimates on the renewal mass function P(i ∈ τ ) collected in [3].

C Computation of the second moment in the Gaussian case

In this appendix we compute the upper bound of the second moment of the partition
function under the assumption that ω̂, ω̄ have a centered Gaussian distribution, for
β ∈ (0, β1) sufficiently small (recall Remark 3.5). We can assume without loss of generality
that ω̂, ω̄ ∼ N (0, 1) (by adjusting β). Recalling our computations from Section 3.2 and
the decomposition from Proposition 3.4, we have to derive the correlations along a chain
of points.

Proposition C.1. Let (Xk)k≥1 be a sequence of i.i.d. variables with distribution N (0, 1).
Then we have for all β ≤ 1/2, ` ∈ N,

E
[
eβ(X1X2+X2X3+...+X`X`+1)

]
= ξ1ξ2 . . . ξ` , (C.1)

where ξ0 = 1 and for all k ≥ 0, ξk+1 = (1− β2ξ2
k)−1/2.

Note that the assumption β ≤ 1/2 is required for ξk to be well-defined for all k ≥ 1.

Proof. The proof relies on the following identity: if X ∼ N (0, 1), then for all t ∈ R, β < 1

and k ≥ 0,

E
[
eβtXeβ

2ξ2kX
2/2
]

= ξk+1e
β2ξ2k+1t

2/2 , (C.2)

(this follows from a direct computation). Hence for any ` ≥ 1, we condition the expecta-
tion over (X1, . . . , X`) to write

E
[
eβ

∑`
k=1XkXk+1

]
= E

[
eβ

∑`−1
k=1XkXk+1E

[
eβX`X`+1

∣∣(X1, . . . , X`)
]]

= E
[
eβ

∑`−1
k=1XkXk+1 eβ

2X2
` /2
]
.

Then, by conditionning over (X1, . . . , X`−1) and applying (C.2), we obtain by induction,

E
[
eβ

∑`
k=1XkXk+1

]
= E

[
eβ

∑`−2
k=1XkXk+1E

[
eβX`−1X`eβ

2X2
` /2
∣∣(X1, . . . , X`−1)

]]
= ξ1E

[
eβ

∑`−2
k=1XkXk+1eβ

2ξ21X
2
`−1/2

]
= ξ1 . . . ξ`−1E

[
eβ

2ξ2`−1X
2
1/2
]

=
∏̀
k=1

ξk ,

which concludes the proof.

When β ≤ 1/2, one can prove that the sequence (ξk)k≥1 is non-decreasing and that it

converges to ξ∞ := 1
β
√

2

√
1−

√
1− 4β2. Moreover the application f : x 7→ (1− β2x2)−1/2

is convex, hence we have for all k ≥ 1,

ξk+1 − ξk ≤ f ′(ξ∞)(ξk − ξk−1) , (C.3)

with f ′(ξ∞) = β2ξ4
∞ ≤ C1β

2 for some C1 > 0. Thus we can prove by induction,

ξk ≤ ξ1 + (ξ1 − 1)(C1β
2 +

(
C1β

2)2 + . . .+ (C1β
2)k−1

)
. (C.4)
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Assuming β < β1 < C
−1/2
1 , there exist C2 > 0 such that for all k ≥ 1,

k∑
i=1

(C1β
2)i ≤ C1β

2

1− C1β2
≤ C2β

2 . (C.5)

Moreover a Taylor expansion yields ξ1 − 1 = 1
2β

2 + o(β2). Hence there exist β1 > 0 and
C3 > 0 such that for all β ∈ (0, β1) and k ≥ 1, one has

ξk
ξ1
≤ 1 + C3β

4 ≤ eC3β
4

. (C.6)

Finally, noticing that eλ(β) = ξ1, we conclude

E
[
eβ

∑`
k=1XkXk+1−`λ(β)

]
=
∏̀
k=1

ξk
ξ1
≤ eC3`β

4

. (C.7)

The left-hand side in (C.7) corresponds exactly to the contribution of a chain of length `
to the second moment of the partition function. Going back to (3.19) and recalling that
the expectation with respect to intersection points gives a contribution e|νn|(λ(2β)−2λ(β))

and that the isolated points do not contribute, we get that

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e|νn|(λ(2β)−2λ(β))

∏
m∈N

eC3β
4|σn,m|

]
.

Applying Cauchy-Schwarz inequality, we obtain

E
[(
Zβ,q,free
n,0

)2] ≤ E(τ ,τ ′)

[
e2(λ(2β)−2λ(β))|νn|

]1/2

E(τ ,τ ′)

[
e4C3β

4(|τ (1)
4n∩τ

′ (1)
4n |+|τ

(2)
4n∩τ

′ (2)
4n |)

]1/2

,

(C.8)
where we also used that

∑
m |σn,m| = |Sn| ≤ 2 (|τ (1)

4n ∩τ
′ (1)
4n |+ |τ

(2)
4n ∩τ

′ (2)
4n |), recall (3.22).

Now, for α < 1, Proposition B.4-(2) gives that ν = τ ∩ τ ′ is a.s. finite; in fact, |ν| is
a geometric random variable. Hence, if β is small enough the first factor in the r.h.s.
of (C.8) is bounded by 2. Applying Cauchy-Schwarz inequality for the other factor, we
therefore end up with

E
[(
Zβ,q,free
n,0

)2] ≤ 2E(τ ,τ ′)

[
e8C3β

4|τ (1)
4n∩τ

′ (1)
4n |
]1/2

,

and one can remove the exponent 1/2 since the expectation on the r.h.s. is larger than 1.
This proves the inequality (3.28) claimed in Section 3.3 when α < 1, and thus gives the
expected nβ and upper bound on the critical point shift.

If α ≥ 1, one concludes by proving that the first factor in the r.h.s. of (C.8) remains
bounded as long as β2N1/min(α,2) ∼ 1, and the second factor does as long as β4N ∼ 1

(up to slowly varying factors). Hence we have nβ ∼ β−4, which gives the expected upper
bound on the critical point shift. All the required estimates can be found in [5, 17], so
we do not write all the details here.
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