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Abstract

In the present paper, we investigate the collapsed phase of the interacting partially-directed
self-avoiding walk (IPDSAW) that was introduced in Zwanzig and Lauritzen (J Chem
Phys 48(8):3351, 1968) under a semi-continuous form and later in Binder et al. (J Phys
A 23(18):L975-1.979, 1990) under the discrete form that we address here. We provide sharp
asymptotics of the partition function inside the collapsed phase, proving rigorously a conjec-
ture formulated in Guttmann (J Phys A 48(4):045209, 2015) and Owczarek et al. (Phys Rev
Lett 70:951-953, 1993). As a by-product of our result, we obtain that, inside the collapsed
phase, a typical IPDSAW trajectory is made of a unique macroscopic bead, consisting of a
concatenation of long vertical stretches of alternating signs, outside which only finitely many
monomers are lying.

Keywords Polymer collapse - Large deviations - Random walk representation - Local limit
theorem
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Notation
Let (ar)r<1 and (b )1 <1 be two sequences of positive numbers. We write

ayp ~ bL if lim aL/bL =1.
L—o00 L—o0

We also write (const.) to denote generic positive constant whose value may change from
line to line.
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1 Introduction

Identifying the behavior of the partition function of a lattice polymer model is in general a
challenging question that sparked interest in both the physical and mathematical literature.
In a recent survey [10], some polymer models are reviewed that have in common that their
partition functions is of the form

Qr ~ Bufpf’Lf, (1.1)

L—oo

where B, 1, 11, o, g are real constants depending on the coupling parameters of the model.
Among these model, the Interacting Partially Directed Self-Avoiding Walk (referred to under
the acronym IPDSAW) which accounts for an homopolymer dipped in a poor (i.e., repulsive)
solvent is conjectured to satisfy (1.1) inside its collapsed phase. To be more specific, based
on numerics displayed in [10] and in [14] (with simulations up to size L = 6000), the values
of o and g are conjectured to be 1/2 and —3/4. In an earlier paper [6,Theorem 2.1], analytic
expressions where displayed for p and ¢1 while o was proven to be 1/2. In the present paper,
we give a full proof of (1.1) for the IPDSAW in its collapsed phase, in particular we prove
that g = —3/4 and give an analytic expression of B.

Model

Several mathematical models have been introduced so far in the literature to investigate
the collapse transition of a polymer in a repulsive solvant (we refer to [7,Section 6] or
[11] for a review on the topic). On the square lattice, a natural pick would be to model the
polymer configurations by the trajectories of a self-avoiding walk. However the combinatorial
complexity of this walk makes such models very difficult to study. This is the reason why the
IPDSAW (that is partially directed) has been introduced, first under a semi-continuous form
in [18] and later on under a fully discrete form in [1]. This later version of the model is the
one we consider here.

The spatial configurations of the polymer are modeled by the trajectories of a self-avoiding
random walk on Z? that only takes unitary steps upwards, downwards and to the right (see
Fig. 1). To take into account the monomer-solvent interactions, one considers that, when
dipped in a poor solvent, the monomers try to exclude the solvent and therefore attract one
another. For this reason, any non-consecutive vertices of the walk though adjacent on the
lattice are called self-touchings (see Fig. 1) and the interactions between monomers are taken
into account by assigning an energetic reward 8 > 0 to the polymer for each self-touching.

It is convenient to represent the configurations of the model as families of oriented vertical
stretches separated by horizontal steps. To be more specific, for a polymer made of L € N
monomers, the set of allowed path is §27 := Uk:l Ly .1, where Ly 1 consists of all families
made of N vertical stretches that have a total length L — N, that is

Ly ={t= @, 2" T 1l + N =1]. (1.2)
With this representation, the modulus of a given stretch corresponds to the number of
monomers constituting this stretch (and the sign gives the direction upwards or downwards).
For convenience, we require every configuration to end with a horizontal step, and we note
that any two consecutive vertical stretches are separated by a step placed horizontally. The
latter explains why Zflvzl |€,,| must equal L — N in order for £ = (Zi)fv: | to be associated
with a polymer made of L monomers (see Fig. 1).
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Fig. 1 Representation of an IPDSAW trajectory with length L = 48 and horizontal extension N = 17. Its
self-touchings are shown in red

As mentioned above, the attraction between monomers is taken into account in the
Hamiltonian associated with each path £ € £, by rewarding energetically those pairs
of consecutive stretches with opposite directions, i.e.,

Hppr, ... en) = BY N1 R tasn), (1.3)
where

(1.4)

~ x| A ly] ifxy <O,
XAy = .
0 otherwise ,

and forx, y € R, x A y := min(x, y).

One can already note that large values of the Hamiltonian are assigned to trajectories
made of few but long vertical stretches with alternating signs. Such paths will be referred
to as collapsed configurations. With the Hamiltonian in hand we can define the polymer

measure as
eHL.p0)
PLpll) = ———, L€, (1.5)
ZLp

where Z; g is the partition function of the model, i.e.,

L
Zig=y_ Y st (1.6)

N=1teLly L

2 Main Results

It was first proven in [2] with combinatorial tools that the IPDSAW undergoes a collapse
transition at some B, > 0, dividing [0, co0) into an extended phase £ := [0, B.) and a
collapsed phase C := [B,, 00) (see also [13,Theorem 1.3] for a probabilistic proof). Note
that, when the monomer-monomer attraction is switched off (8 = 0), a typical configuration
(sampled from Pp g) has a horizontal extension O (L) since, roughly speaking, every step
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has a positive probability (bounded from below) to be horizontal. In the extended phase, the
interaction intensity B is not yet strong enough to bring this typical horizontal extension from
O(L) to o(L). Inside the collapsed phase, in turn, the interaction intensity is large enough to
change dramatically the geometric features of a typical trajectory, which roughly looks like
a compact ball with a horizontal extension o(L). Asymptotics of (Z g)1>| are displayed
and proven in [6,Theorem 2.1 (1) and (2)] for the extended phase and at criticality (8 = B.).
Inside the collapsed phase, although the exponential terms of the partition function growth
rate were identified via upper and lower bounds (see [6,Theorem 2.1 (iii)]), a full proof of
such asymptotics was missing. We close this gap with Theorem 2.1 below, by identifying
the polynomial prefactor. This improvement relies on a sharp local limit theorem displayed
in Proposition 4.6 for some random walk in a large deviation regime (more precisely it is
constrained to be positive, cover a large area and end in 0).

Let us settle some notations that are required to state Theorem 2.1. For 8 > 0 we let Pg
be the following discrete Laplace probability law on Z:

81kl —B/2

e 2 l1+e

Ps(-=k) = . . cpi= BIkl — =1 2.1
p keZ

Let B, is the unique positive solution to the equatlon B = 1 (see [13,Theorem 1.3]); in

particular :ﬁ < 1 for B > B.. Moreover, we denote by L£(k) the logarithmic moment
generating function of Z a random variable of law Pg, i.e.,

cosh(B/2) — 1 )

BB
cosh(B/2) — cosh(h) he(-5.8). @2

2

L(h) = logE,g[ehZ] = log(

which is smooth, strictly convex and even on (—8/2, 8/2), and L” is bounded away from 0O
on (—f/2, /2) by some positive constant.

We now display some definitions required to study the asymptotics of the probability that
some random walk trajectory encloses an atypically large area (which were first introduced
in [8]), as well as the escape probability of a certain class of drifted random walks.
Asymptotics for trajectories enclosing an atypically large area. We let G : (—f, B) — R be
defined as

1
Gh) ::/ C(h(% —s))ds, for he (=8, B). (2.3)
0

Recalling (2.2), a straightforward computation yields that g”(h) > 0 forh € (-8, B),
and G’ isaC! diffeomorphism from (—8, B) toR. Weletg € R 74 be its inverse function.
Considering X := (X;);eN a random walk starting from the origin, whose increments (X; —
Xi—1)ieN are iid. with law Pg, we denote by Ay(X) (or Ay when there is no risk of
confusion) the algebraic area enclosed by X up to time N, i.e.,

ANX) == X1+ -+ XN. 2.4

It is proven in [8] that, for ¢ € (0, co) N the exponential decay rate of the event {Ay =

N2 ’
gN 2, XNN = 0} is given by the Legendre transform of G (or “convex dual”, see [16,Sec. 12]),
that is ¢ defined by

V(q) := suplgh — G(h), h € (=B, B)} = qh? —G(h?), for g € (0,00), (2.5)
(notice that G is strictly convex, hence so is ), and in this large deviation regime, the fluctua-
tions of (%AN (X), Xn) around (g N, 0) are asymptotically Gaussian (see also [8,Section 4]
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and Appendix A.1 for more details). The determinant of the covariance matrix of this limiting
distribution is given by

1 1 1 2
9 (h) :/ s2L"[h(s — %)]dsf L"[h(s — Hds — [/ s L[h(s — %)]ds] ., (2.6)
0 0 0

which is positive by the Cauchy—Schwarz inequality. _
Tilting and escape probability. For |h| < B/2 we let Pj, be the probability law on Z defined
by perturbing Pg as

dpP, hk—L(h

—= (k) = W kez. 2.7

apy (k)y=e 27
For h € (0, B/2), we consider a random walkNX := (X;);en such that Xo = 0 and whose
increments (X; — X;—1)jen are i.i.d. with law Py, i.e. with a positive drift (with an abuse of
notation, P, will also denote the law of this random walk). We denote by « (%) the probability
that X never returns to the lower half plane, that is

eZh -1

w(h) = Pp(Xi >0, VieN) = —mmm—r,

(2.8)
where the second identity is proven in Lemma 5.15.

Finally, we compute in Proposition 4.6 below an equivalent as N — oo to the probability
of the event {Ay = qu, Xy =0,X; >0V1 <i < N — 1}, which involves the constant
prefactor

1 792
q = ~ 1 K(%) ’ (2.9)
21w 9 (h1)2

for B, g > 0. With all those definitions, we may now state our main result.

Cg,

Theorem 2.1 For any B > B, one has

Kp  pr+Glapvi
Zrp e L3/4€ s (2.10)
with
G(x) = xlo & T 2.1
= gﬁ xYy(x—), x>0, (2.1D)
e
and -
ag = argmax {G(x): x €]0, oo[}, (2.12)
and

T, 2
22w Cy a0
Kp = — £ — e (@213
[(1 + e*ﬂ)earccosh(e cosh(B)) _ eﬂ/2(1 _ 67'3)] a% G (a/g)|

Theorem 2.1 is proven in Sect. 4. The proof requires to decompose a trajectory into a
succession of beads that are sub-trajectories made of non-zero vertical stretches of alternating
signs (see Sect. 3 for a rigorous definition). Inside the collapsed phase, an issue raised by
physicists was to understand whether a typical trajectory contains a unique macroscopic bead
or not. Thus, for every £ € §2; we let Ny be its horizontal extension (i.e., £ € Ly,,1) and
also |Imax (£)] be the length of its largest bead, i.e.,

nax (©)] := max { X0, (14 1€:): 1 <u<v<Ng, €ilip1 <0 Yu<i<v—1}.
(2.14)
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With [4,Theorem C] it is known that a typical trajectory indeed contains a unique macroscopic
bead, and that at most (log L)* monomers lay outside this large bead. We improve this
result with the following theorem, by showing that only finitely many monomers are to be
found outside the unique macroscopic bead. Recall from (1.5) that P, g denotes the polymer
measure.

Theorem 2.2 Forany B > B,
lim liminf PL_,g(|Imax(K)| >L—k)=1. (2.15)
L—oo

k— 00

Comments on the Results

Let us give some insight into (2.10-2.13). In Proposition 4.1, we provide sharp asymptotics
to the partition function of the single-bead version of the model, in which vertical stretches
are constrained to alternate signs and be non-zero. Since any trajectory of the full model may
be decomposed into a sequence of single-bead ones (see Sect. 3.1 below), we prove in Sect. 4
with a renewal argument that the same asymptotics hold for the full model, up to an explicit
constant factor.

Regarding the single-bead model, we display in Sect. 3.2 a probabilistic representation
of its partition function, which was initially introduced in [13]. Let X be a random walk
with increments distributed as Pg (recall (2.1)). For a length L € N and when fixing a
horizontal extension N € N, the single-bead partition function matches the probability that
X satisfies the event {Ay = L — N, Xy4+1 =0,X; > 0V1 <i < N}, up to an explicit
factor 2cg ePL (c,ge_/3 )N (see (3.16)). This probability matches the partition function of a
1-dimensional SOS-model (Solid-On-Solid) with additional constraints: on the one hand the
trajectory must enclose a fixed area and end in 0, as in the SOS-models previously studied in
[8, 12]; on the other hand the walk has to remain positive. Therefore, we prove Proposition 4.1
by:

— First observing that, in the Collapsed regime, the main contribution to the single-bead
partition function comes from trajectories with horizontal extension N = xvVL,x €
[x1, x2]N % (see [4,Lemma 4.4]). For those trajectories, the latter event becomes {Ay =

qN2 4+ O(N),Xn+1 =0,X; >0V1 <i <N} withg = x~2 > 0, which is a large
deviation regime for the walk X.

— Then providing an exact equivalent for the probability of the latter event in Proposition 4.6,
which is the main feature of this paper. The case without the positivity constraint has
already been handled in [8] (see also [12] where the authors compute the exponential
decay rate in N, which is 1; (q)), and our result strongly improves previous estimates
such as [4,Prop. 2.4-2.5], by deriving sharply the effect of the positivity constraint on
this equivalent (whereas [4] only computes polynomial bounds).

Finally, Theorem 2.1 is obtained by optimizing on admissible ratios % =Xx € [x1, x2]inthe

partition function. In particular, notice that G (ap) is the Legendre transform of the (strictly
convex) rate function x — x ¥ (x —2), evaluated at log(Cﬁe_ﬂ).

Outline of the Paper

With Sect. 3 below, we introduce some mathematical tools of particular importance for the
rest of the paper. Thus, in Sect. 3.1 we define rigorously the set containing the single-bead
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trajectories. Such beads allow us to decompose any paths in £2; into sub-trajectories that
are not interacting with each other. Under the polymer measure, the accumulated lengths
of those beads form a renewal process which is of key importance throughout the paper.
Section 3.2 is dedicated to the random walk representation of the model and provides a
probabilistic expression for many partition functions introduced in the paper. In Sect. 4 we
prove Theorem 2.1 subject to Proposition 4.1 which gives sharp asymptotics for those partition
functions associated with single bead trajectories. Proposition 4.1 is proven afterwards subject
to Proposition 4.6. The proof of Proposition 4.6 is divided into 4 steps, displayed in Sect. 5
after we introduce a tilted law for the random walk X inspired from [8], for which the event
{AN(X) = ¢ N?, Xy = 0} becomes typical. Note that Steps 3 and 4 from Sect. 5 require
the local limit theorem which is displayed in Appendix A.1, and Proposition 5.4 is proven
in Appendix A.2. Finally, Theorem 2.2 is proven in Sect. 6 by using mostly the asymptotics
provided by Theorem 2.1.

3 Preparations
3.1 One Bead Trajectories and Renewal Structure

We call bead a maximal succession of non-zero vertical stretches with alternate signs; more
precisely a bead terminates whenever the trajectory makes a zero-length vertical stretch, or
two non-zero stretches of the same sign. Any trajectory £ € §2; can be decomposed into a
succession of beads, and this decomposition is unique.

Let L € Nand denote by £2, the subset of £2; gathering single-bead trajectories of length
L, i.e. trajectories made of non-zero vertical stretches that alternate orientations. Thus, we

o L2 5o :
set 27 = Uy Ly, with

N
£y, ::[(zi){\’:1 eZV: Y |l =L—N, €iliy1 <0 V1<i <N]. 3.1)

i=1

We also denote by Z; P the partition function restricted to trajectories in 27, i.e.,

L/2
o . H(
Zp g = § § PHO (3.2)
N=1teLy

The bead decomposition and single-bead model were already introduced in [4]; however
additional care is required to derive sharp asymptotics of Z; g: after a zero-length vertical
stretch, the sign of the first stretch of the next bead is unrestricted, whereas it is otherwise
constrained by the sign of the last stretch of the previous bead. To bypass this combinatorial
inconvenience, we tweak the decomposition to integrate the zero-length stretches at the
beginning of beads (see Fig. 2), giving rise to a renewal structure: the realization of a single-
bead trajectory has no influence over the value of the partition function associated with the
next bead. We define 22 © the set of extended beads as

2=, (3.3)
L>2
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Fig. 2 Decomposition of an IPDSAW trajectory into “extended” beads, see (3.3-3.5). A new bead begins
whenever two non-zero length stretches have the same sign, or when there is a succession of zero-length
vertical stretches

where 2 [ is the subset of £2; gathering trajectories which may or may not start with a
sequence of zero-length stretches and form subsequently a unique bead, i.e.,

L-2
Qp=Jept. (3.4)
k=0
with
epti={tearu>ol,
S/Z\Lo’k = {Z €ER: N>k ty=--=¥ 20,(€i+k),{\21_k € QLO—k]’ kefl,....L -2}
(3.5)
We recall (3.2) and (3.4) and the partition function restricted to trajectories in Q [ becomes:
L-2
22/3 = Z |:l Lik=0) ZLoﬂ + ligeny Z7 4 /3:|. 3.6)
. k=0 2 ’ 7

Note that, in the definition of Q LO Yin (3.5) the sign of £ is prescribed because if an extended
bead does not start with a zero-length stretch, then the sign of its first stretch must be the
same as that of the last stretch of the preceding bead; hence the factor % in (3.6) (see Fig. 2,
where the 2nd, 4th and 5th beads start with non-zero stretches with constrained signs, and
the 3rd bead starts with two zero-length stretches). Of course this latter restriction does not
apply to the very first extended bead of a trajectory and this is why we define

L-2

ZPg=Y 20 1 p (3.7)
k=0

For convenience, we also define £2; the subset of £2; containing trajectories ending with
a non-zero stretch, i.e.,
Qp:={eQr: ln, #0}, (3.8)

(see Fig. 2 for an example). At this stage we can decompose a given trajectory £ € £2; into

extended beads by cutting the trajectory at times (t j);(:% defined as 7p = O and for j € N
suchthat 7;_; < N

= max s > 11 @iops,, , €2° or (<), €2°). (39
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Then n(€) is the number of beads composing ¢ and satisfies t,¢) = Ny, thus
t=0"YB; with Bji=(lr,_41..... L), (3.10)

where ® denotes the concatenation. We also set Xo = 0 and for j € {1, ..., n;}, we denote
by X; — X ;1 the number of steps (or monomers) that the j-th bead is made of (also referred
to as total length of the bead), that is,

Xj—Xj1=1—1j1 e il el J € {1,..., ne}. 3.11)

The set X := {0, Xy, ..., X,,} contains the accumulated lengths of the beads forming ¢, in
particular X,,, = L.

Remark 3.1 Note that a trajectory £ € §2; \ £2; may also be decomposed into extended beads
as in (3.9-3.11). The only difference is that the very last bead is followed by a sequence of
zero-length vertical stretches, i.e., X,, = L — k for some k € {1,..., L} and the last k
vertical stretches in £ have zero-length.

By using this bead-decomposition we can rewrite Z 8 the partition function restricted to
2f as
L

L/2

ZEg=Y. > Zign@=rXi—Xi =4V <i<r)
r=1ty+-+t=L
L/2

.
=X 2 Ziy l_lz’Z\tj,,B’ (3.12)
P

r=1ty++t, =L

where Z[ (D) denotes the partition function restricted to trajectories £ € £2; having prop-
erty D.

3.2 Probabilistic Representation

The aim of this section is to give a probabilistic expression of the partition function Z P and
to use it subsequently to provide closed expression of the generating functions associated
with (Z; ﬁ)LZQ and with (Z7 ﬁ)LzZ

We recall the definition of Pg and cg from (2.1), and for x € Z we denote by Pg_ , the law
of arandom walk X := (X;);>0 starting from x (i.e., Xo = x) and such that (X; 11 — X;)i>0
is an i.i.d. sequence of random variables with law Pg. In the case x = 0, we omit the x-
dependence of Pg , when there is no risk of confusion. We also recall from (2.4) that Ay
defines the algebraic area enclosed in-between a random walk trajectory and the x-axis after
N steps.

Recall (3.1) and (3.2), and let us now briefly remind the transformation that allows us to
give a probabilistic representation of Z , (we refer to [5] for a review on the recent progress
made on IPDSAW by using probabilistic tools). First, note that for x, y € Z one can write
XAy = % (Jx| + |yl = |x + y|). By using the latter equality to compute the Hamiltonian
(recall (1.3)), we may rewrite (3.2) as
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L2 N N
Zig=3 > exp(BY 1l = 5D 1+ tusal)
N=1 teLy, n=1 n=0
Lo=tN4+1=0
Lz AN N exp ( g wn + En+l |)
—cpeft Y (7;3) > T1 . (3.13)
N=I ZEENL n=0
to=tn41=0

Henceforth, for convenience, we assume that any ¢ € Ly ; satisfies {9 = £y41 = 0. At

this stage, we denote by BI-\/F the set of those N-step integer-valued random walk trajectories,
starting and ending at O and remaining positive in-between, i.e.,

Bl i={)NyeZN xo=xy =0,x, >0 V0 <i < N}. (3.14)
It remains to notice that the map
{tely,: t1>00 - {XE e B |+ Ay(x) =L — N}
Ty : ’ N+1 N+1 1 ) \N+1 ’ (.15
) = @ ==y

is a one-to-one correspondence, and that for £ € L3, N.L the increments of Ty (£) are in modulus
equal to (|4;—1 + ¢; |)N+l Therefore, set I'g := c,g/eﬂ and (3.13) becomes

L2

Zpge Pl =2cp > ()" Py(X € Bf,,, AN(X) =L —N), (3.16)
N=1

where the factor 2 in the r.h.s. in (3.16) is required to take into account those £ € Ly |
satisfying £ < 0.

With the next Lemma, we provide an explicit expression of the generating functions
Y221 g zF and Y221 g zF at z = e7P. This is needed to determine K 4 in Theorem
2.1.

Lemma3.2 For B > 0,

_ _ 2 e
0By =) 2Ly e =,
—e
L>2
5B) =) Zp e Pt =ePergry, (3.17)
L>2

with rg = Eﬁ[l{xl>0} I{szo} (1",3)"’] where p := inf{i > 1: X; < 0}. Moreover,

+00 ifp<pe,

s = 1 — €7ﬂ _ engrarccosh(e_ﬁ/z cosh(ﬂ)) lf,B > ,8c~ (3'18)

Proof We recall (3.16) and we start by computing

Y zpge =205 Y (p)V > Pg(X € By, AN(X)=L—N)
L>2 N>1 L>2N

=2cp » (Tp" Pg(X € Bf,)
N>1
=2ePrg. (3.19)

hen, we use (3.6) to write
71 Springer
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L-2
~ 1
o —BL . —BL o o
ZZL,,B e P ,:ZZe B |:5 L{k=0) ZL,ﬂ+1{kEN}ZL7k,/31|
L>2 L>2 k=0
00
AN SR e,
L>2 =
_ —BL
_( = ﬂ)Ze Z3 5 (3.20)

and it remains to combine (3.19) and (3.20) to obtain the second equality in (3.17). Using
(3.7), the very same computation allows us to obtain the first equality in (3.17).

To obtain a formula for rg, let us now compute Eg[(/3)”]: indeed, the fact that the
increments of X follow a discrete Laplace law entails that (o, Xy, ..., X,_1) and X, are
independent, and moreover that —X, follows a geometric law on N U {0} with parameter
1 — e=#/2. Thereby,

Eg[(I5)”] = Eg[lix,>0)(Ip)"] + I Pp(X1 < 0)

g TN 1 1
- s (5 +30-5)
Pe(—X,=0) ef \cpg 2 cB
_Ig+ e P
_— m . (3.21)
It is a straightforward application of [3,Eq. (4.5)] that there exists ¢ > 0 depending on
only such that

c
Pg(p=1) ~ 3 as t — 00. (3.22)

Recall that 8 +— g is decreasing on (0, 00); in particular when 8 < B, one has I'g > 1, so
(3.21) and (3.22) imply rg = +oo.

Recall the definition and expression of £ from (2.2). When 8 > p., notice that
(e’fX"“"g(Fﬁ)”)nzo is a martingale under Pg ¢ if and only if £(—¢) = —log(Ig). Since
I's < 1 and £ is decreasing, not bounded on (—/2, 0], there is a unique {g € [0, B/2)
satisfying this equality, given by

¢p = arccosh((1 — I'g) cosh(B/2) + I'g) = arccosh(e /% cosh(p)). (3.23)

Noticing that this martingale stopped at time p is uniformly integrable and using Doob’s
Optional Stopping Theorem, we finally obtain
-1 1 — ep—B/2
—8X
Eﬂ[(Fﬁ)/’] = Ef;l:e ¢p p] = et (3.24)
(recall that —X, follows a geometric law on N U {0} with parameter 1 — e~P/2), which
concludes the proof by recollecting (3.21) and (3.23). O

To end this section we state and prove the following corollary which is needed in the proof
of Theorem 2.1 (see Sect. 4) below.
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Corollary 3.3 Forany 8 > B, we have 52(8) < 1.

Proof We observe that 8 — &,(8) is decreasing simply because for every L > 2 and every
£ € §2r the quantity B — Hy g(¢) — BL is decreasing (recall (1.3), and notice that any
trajectory £ € £2r, realizes less than L self-touchings). Therefore, it only remains to prove
that 82(8;) = 1, and the corollary follows. Recall that I's. = 1, which ensures that ePel? ig
a solution to X3 — X2 — X — 1 = 0 and that ¢g, = 01n (3.23). This implies both

rﬁc — 1 — e_ﬁc _ e_ﬁc/z — 6_3/36/2,

and
1 —Be
52(B) = e P2 (")
1 —eF

which concludes the proof. O

4 Proof of Theorem 2.1

In this section we provide a sharp estimate for the partition function of single-bead trajecto-
ries in Proposition 4.1, with which we prove Theorem 2.1. The proof of Proposition 4.1 is
displayed afterwards subject to Proposition 4.6 and Lemma 4.5. Recall the definition of G
from (2.11), and let us point out that it was proven in [4,(1.27)] that § is smooth, concave,
negative on (0, 00), and it admits a unique maximizer ag € (0, 00).

Proposition 4.1 For B > f,, there exists K ﬁ" > 0 such that
ﬂ ﬂL+g(aﬁ)f “.1)

ZL B L»oo L%/

Corollary 4.2 For B > B, there exist I?ﬂ > 0and kﬁ > 0 such that

o ﬁ PLAG VL °o /3 oBLGapVL
ZLﬁL%oo L3/4 ’ and Z ﬂL*)OO L3/4 ’ (4.2)

Explicit formulae for K B K g and K ﬁ" are given below in (4.4) and (4.37). Let us point out

that (4.1) is a substantial improvement of [4,Prop. 4.2], where the polynomial factors were

L—lk with ¥ > 1 in the lower bound, and LL in the upper bound. Moreover Corollary 4.2 is a

straightforward consequence of Proposition 4.1. Indeed, let us define for convenience
1

h(n) = ey RACONZEEI=S 4.3)

Recollecting (3.6), we write
-B 1 —B(L—k)
e = e e

TIVELE T 5 Lﬂ+Z 7] kg
h(L) * 2 h(L) h(L) ’

and similarly for (3.7). Notice that #(L) ~ h(L — k) as L — oo for any k € N, so (4.1) and
dominated convergence imply that (4.2) holds true with

1+eﬁ _ . 1
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Proof of Theorem 2.1 subject to Proposition 4.1 Recall the definitions of §;(8) and §,(B) in
(3.17), and define two probability laws ¢; and g, on N by

(1) =8B Zpe P 12, (4.5)
@) =8B Zge ' 122, (4.6)

For r € N, we denote by g5 the convolutlon product of r times g2 and by g1 * ¢5* the
convolution product between ¢ and g5 *. This allows us to rewrite (3.12) under the form

~ _ 31(B)
Zpi=e Pz =5 P >0 [ar+ay @) @.7)
2(B)
Recalling (4.3), Corollary 4.2 implies that
(n) h(n). with Ko
n) ~ u n), with wug:=——,
ER NS T
K
g2(n) ~ wvgh(n), with vg:=—2 (4.8)
n—>00 8(B)

At this stage, Theorem 2.1 is a straightforward consequence of Claims 4.3 and 4.4 below.
Those claims are proven in [9,Corollary 4.13 and Theorem 4.14] in the case where g = ¢3.
However, (4.8) guarantees that the proof in [9] can easily be adapted to our case since ¢ and
g> enjoy the same asymptotic behavior (up to a constant).

Claim 4.3 For B > 0 and r € NU {0} it holds that q| * g5* (n) ~p—o0 (up + 1 vg) h(n).
Claim 4.4 For B > 0 and € > O there exists no(e) € N and C(g) > 0 such that
q1*% g5 (n) < C(e) (1 4+ &) h(n), n >ngp(e), r e NU{0}. 4.9)

It remains to use the dominated convergence Theorem to conclude from Claims 4.3 and 4.4
that for§ < 1

. 1 % uﬂS vg 82
lim —ZS’[Q >x<q2(r ](n)—u/328 +8vﬁzr8r 5 -
n—o00 h(n) i e et 1 - 5 (1 =19)
(4.10)

Combining (4.7) with (4.10) at § = §2(B) (recall that §2(8) < 1 by Corollary 3.3) we obtain
that

1 5. K Kg$s
lim —Zf = —2 0B

L—oo h(L) ™ 1=6(8)  (1-8(B))?
To complete the proof of Theorem 2.1, it remains to take into account trajectories that
end with some zero-length stretches. To that aim, we recall (3.8) and we partition §2;, into
subsets whose trajectories are ending with a prescribed number of zero-length stretches, i.e.,

4.11)

2L =Ufo{t e @i Nezk (@)} € 264 it = bysz =+ = by, =0},
(4.12)
By using this decomposition, we obtain that

L
Zip=Zrpe P =) ePZ{ . (4.13)
k=0
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and then, using (4.11) and dominated convergence we conclude that
1 [ Kg Kp81(8) ]
l—ePLL=6) (-6

which completes the proof of Theorem 2.1, by combining (4.14) with (4.4) and (3.17), and
by writing

1 ~
—Z1p= (4.14)

Kg := lim
L—oo h(L)

Kp = Kge P [(1 4¢Py eumecome e _ op/2() _¢=F)] 72 4.15)
where K ﬁ" is computed below in (4.37). O

Proof of Proposition 4.1 Let us now prove Proposition 4.1 subject to Lemma 4.5 and Propo-
sition 4.6 below. Recollecting (3.16), Lemma 4.5 states that the main contribution to the
single-bead partition function comes from terms of order N ~ /L in the sum, and Propo-
sition 4.1 provides a sharp estimate of those. The proof of Proposition 4.6 is postponed to
Sect. 5, whereas Lemma 4.5 was already stated and proven in [4,Lemma 4.4] so we do not
repeat the proof in the present paper.

Recall that Ny is the horizontal extension of a trajectory £ € £, and Z} (D) denotes
the partition function restricted to trajectories £ € §2; having property D.

Lemma 4.5 [4,Lemma 4.4] Let § > B, there exists (a1, az) € (0, 00)2 such that
_ Zp 4(Ng € [a1, a2]VL)
L.B
lim =1

o
L—o0 ZL,/S

(4.16)

For B > 0 and ¢ > 0 recall the definitions of J(q) and Cg 4 from (2.5) and (2.9). For
conciseness, let us also define

ok ={X:X,=0,4,=k,X;>0,0<i<n}, (ke (No)2. (4.17)

Proposition 4.6 Let [q1,q2] C (0,00) and N € N. We have that for N € N such that
2
gN- €N,

C o
Ps(Vy. gn2) = % e NV@ (1 +o(1)), 4.18)
uniformly in q € [q1, q2]-

Remark 4.7 For the proof of Proposition 4.6 (see Sect. 5), we took inspiration from [15]
where a slightly different problem is considered. To be more specific, the authors consider a
random walk (Y;);>0 with a negative drift and a light tail such that the moment generating
function ¢(¢) := E(e' M) satisfies that there exists a A > 0 such that (1) = 1, go’()h) < 0
and (p// (A) < oo. For such a walk, they provide the assymptotics of the joint law of 7 :=
inf{i > 1: Y¥; < 0} and of A;_ as the latter becomes large. When applied in our framework,
[15,Theorem 1 and 2] prove that for p > 0 and ¢ > p/2 there exist Cy, C2 > 0 such that
Ps(Xy < pN,Ay =qN*, X;>p i,0<i<N) ~ C—‘ze—cﬂv.
N—oco N

The case p = 0, which is the object of Proposition 4.6 is not covered by [15] though, which
is why we provide a complete proof in Sect. 5.
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We start the proof of Proposition 4.1 by recalling (3.16) and the equality ;—’; = ¢P, which
allow us to write for L € N,
1+L/2
Zp g =2cpel 77 4 =2P1 N (TN PN L on1) (4.19)
N=2

Lemma 4.5 guarantees us that it suffices to consider

aV/L
QLp:= Z I Ps(Vn.L-n+1) (4.20)
N=a\vL
— VL
= 2 UpiRlvg arVD? )
xe[al,az]ﬂ%
with g7 (x) := “);27‘?“ We note that x € [ay, az] yields that for L large enough, g7, (x) €
[%, %] so that we can apply Proposition 4.6 for every x € [aj, az2] N N in the rh.s. of
2a5° aj VL
(4.20) and obtain
Ch.g1() xv/L[log [g—/
~ i ak LA NS B ‘//(CIL(X))] 4.21
Oup,~ 2. —aTe “.21)

xe[al,az]ﬂ%

By definition (see (2.5)) J is C2 on (0, co) and therefore, uniformly in x € [ay, ap] we get
" — ("3 —d (2 L 1
Y(qr) =y () -y () 7+ 0(p), (4.22)

such that (4.21) becomes

T2
1 Cpqme’ VLG
~ — —mar - 4.2
QL’ﬂ L—>oco L Z x2 ¢ ’ (4.23)
xe[al,az]ﬂ%
with x € (0,00) g(x) = xloglg — x J(x_z) a function already investigated in

[4,(1.27)]: which is 2, negative, has negative second derivative (and therefore is strictly

concave on (0, 00)), and reaches its unique maximum at some ag € (ai, az).

At this stage we pick R > 0 and we set Tz 1= [La'f}[“ — ﬁ, Laff}LFLJ + %] N %,

and

~ C PRTALE e
R+ ._ B.qL(x) VLG (x)
Opyi= ), — 53—« ,
XETR.L

~ C RV S N

R~ ._ B4 () VIG)

= e : 4.24

017 > > (4.24)
xelan,alNJE\Tk L

We recall (2.9) and we note that for 8 > 0, the function g € (0, 00) > Cg 4 is continuous
since x € (0, B/2) — k(x) is continuous (see Lemma 5.15) as well as g — h9 (see (5.6)

and (5.7)). Moreover gy (x) converges to a% uniformly in x € 7 ;, and therefore
B
Lli_)moo Cpyrx) = Cﬂ,agz uniformly inx € 7p 1., (4.25)
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so that we can rewrite

T =2
C. eV’ @) pris lagv/L]
ofy o~ Ly SO, (4.26)
P L—oo aﬁ Ny

where we have changed the summation indices for computational convenience. Notice that G
is C% on [a1, az] and |ag «/ZJ / VL converges to ag, which is the maximum of G. Therefore,
we may write the following expansion of G,

g(taﬁfj n ) g(aﬂ)+1

~1 1’12 n
et 5 Gap+0 (4 )+o(f) (4.27)

For ¢ > 0, we deduce an upper bound on the last factor from (4.26),

RLUA g V] L4
ag ~ len _n_y2

> LG(+ %) < R GlapVL ) 29 i) (4.28)

n=—RL* n=—RLI/4

for L sufficiently large; and a Riemann sum approximation yields (recall that G’ (apg) is
negative)

RL1/4 15 2
D LA L / G'@p) 5 g | (4.29)
RLIA L—o00 —R
n=—

Similarly to (4.28), we may write a lower bound on the last factor from (4.26) by changing
the sign of ¢. Combining both bounds and letting ¢ go to O eventually gives

C, e@’(a'; )
Q By L4 eg(ag)f g//(“ﬂ) 2 dx . (4.30)
Lﬂ L—o0 a%

Let us now consider Qf’,;. To that aim, we bound it from above as

B <me X w3
x€la; ,az]ﬁ%\TR‘L
with ~
v'(=)
c e’ 2
Msy = max ﬁs’iL(x)z (4.32)
x€lay,azl X

The continuity on (0, oo) of both g — Cg , and 17] " and the fact that, for L large enough,
qgrL(x) e[ 1/(2a§) 2/c12 for x € [a1, a>], guarantees us that there exists a M > 0 such that
Mg 1 < M forevery L > 1

Recalling that Q is C2 strictly concave and reaches its maximum at ag there exists ¢ > 0
such that Q(x) < g(a,g) —c(x— aﬁ)2 for x € [a1, az] and therefore the sum in the r.h.s. in
(4.31) can be bounded above as

~ ~ 1 0 _a(_n_\2
P A 1 D DI A (4.33)

XE[“Ia“Z]m%\TR.L n=RL/4
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The function x — e*”‘2 being non increasing on [0, 00), a standard comparison between
sum and integral yields that for L large enough and every R > 2,

1 ad —c ()2 o0 2
T Z e A < / e N dx. (4.34)
n=R L1/4 R-1

It remains to use (4.31-4.34) to conclude that for L large enough and R > 2,

~ = o0 2
OF5 <2aMLVAI@VE [ gmexyy, (4.35)
’ R—1

ol x2 ~
We recall that [ ¥ @) T dx = \/—27/G" (ap). Then, we combine (4.23) with (4.24),
(4.30) and (4.35) to claim that

T2
V2 Cﬁ “52 eV @)

OLp ~ L3/%

Glap)/L
o = 7 e , (4.36)
ag |g (aﬂ)|

and it suffices to recall (4.19) to complete the proof of Proposition 4.1 with
V2rC, 2 ei/(al‘;z)
p F-ap

Kg =2e —
el

(4.37)

5 Proof of Proposition 4.6

Proposition 4.6 is a substantial improvement of [4,Prop. 2.5], since this latter proposition
only allowed us to bound from below the quantity P(V, ,,,2) with a polynomial factor 1/ n?
(y > 2) instead of 1/n? in the present Lemma. Let us first recall some results on the large
deviation principle satisfied by the sequence of random vectors (%A n—1> Xn)n>1, which were
notably stated in [8,Section 4] in order to study SOS-models. We then provide an outline of
the proof of Proposition 4.6, which is divided into 4 steps, corresponding to Sects. 5.1, 5.2,
5.3 and 5.4 respectively.

Change of Measure

Let X := (X;);ien be a random walk with law Pg o, i.e. starting from the origin and whose
increments are i.i.d. with law Pg (recall (2.1)). For |h| < B/2, recall the definitions of L(h)
and l~’h in (2.2), and (2.7). Recall also the definition of Ay (-) in (2.4).

For a trajectory x = (x;)!_o € Z""1, xg = 0, define A, (x) := (LA, (x), x,). Large
deviations estimates for the random vector A,(X) are displayed in [8]. Typically, one is
interested in the probability of events as

(7 4n(0) = (g, p)} with (g, p) e R* xR,
(where R* := R\ {0}), which requires to introduce tilted probability laws of the form

dP, p
dPg o

(x) = A =La, (h) i L, (h) = logEﬁ,o[eh'A"(X)l (5.1
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for x = (x;)!_, € Z"™!, xo = 0, where h := (ho, h) € D, with
Dpy = {(ho,h) € R*; |hy| < /2. (1 — Hyhg + hy| < B/2}.

For (g, p) € R* x R, the fact that V[;LA”] isacl diffeomorphism from Dg ,, to R2 (see
[4,Lemma 5.4]), allows us to choose k := h,, (¢, p) in (5.1) with k,, (¢, p) the unique solution
(in k) of the equation

B 4000] = V[ 2, ]0 = @, 0. 52)

Under Py, 5, (4, p) the event {%A 2(X) = (¢, p)} becomes typical and can be sharply estimated.

In the present context though we only consider events where the random walk returns to
the origin after n steps, i.e., {%An (X) = (g, 0)} with p = 0. Moreover, for straightforward
symmetry reasons (stated e.g. in [4,Remark 5.5]) we have

hn(q,O)Z(hZ, hq( 2n)) qgeR

where A is the unique solution in % of the equation G, (h) = g, with

1
G (h) := —.CA”[h, —La - D)) for he(- 25 1

)
= 124’1(1 2=0)]. (5.3)

Itis claimed in Lemma 5.2 below that i +— G, (h) isaC ! diffeomorphism from (— ”Tﬂl %)
to R which justifies the existence and uniqueness of ;. As a consequence, instead of those

tilted probability laws in (5. 1) we shall rather use the probability laws P, ;, that depend on

the sole parameter i € (——1, - 1) ie. forx = (x,)” e 72" xo =0,
dpP h 1

Sk () = ¥nnAa1 @) | ith g (a,s) = h S — 7(1 - f)s —nGu(h), s,acZ.
dPg o ' n 2 n

(5.4)
Letus point out that, under P,, ;,, the increments (X; —X; 1)” | areindependentand X; —X;
follows the law P with parameter g(l Ziz l) (recall (2.7)).
It remains to define the continuous counterpart of L4,

Dy i= {(ho,h) € R il < B/2, ho + | < B2}, (5.5)
and for every h = (ho, h1) € Dg,
1
L(h) 2:/ L(hox + hy)dx. (5.6)
0

As stated in [8] and [4,Lemma 5.3], VL 4 (h) which can be written as

VLAh) = OngLa, 0 La)(h)
(5.7)

1 1
(/ x[,’(xho—i—hl)dx,/ L‘,’(xho—i—hl)dx),
0 0

is a ¢! diffeomorphism from Dg to R2. Thus, for (¢, p) € R? we let ﬁ(q, p) be the unique
solution in & € Dg of the equation VL4 (k) = (g, p). As mentioned above for the discrete
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case we only need the case p = 0, for which the fact that £’ is an odd increasing function
combined with (5.7) ensures us that

~ - na
iq.0 = (. -5 ). qek. (5.8)
where 714 is the unique solution in % of the equation G'(h) = ¢, with

G(h) = La(h,—%) for he(—B,B)
1
:/ L(h(3 —x))dx . (5.9)
0

With Lemma 5.3 below, we claim that # — G’ (h) is a C! diffeomorphism from (—g, B) to
R, which justifies the existence and uniqueness of .

Outline of the Proof of Proposition 4.6 With Step 1 below, we bound from above the
difference between the finite size exponential decay rate of Pg(V, ,,2) and its limit as n
tends to oo. In Step 2, we divide Pg (VN,qu) into a main term My , and an error term
EN 4. The main term is obtained by adding to the definition of Vy /2 some constraints
concerning the possible values taken by X,,, Aay, Xny—ay and Ay_4y—1 for an ad hoc
sequence (ay)n>1 satisfying both ay = o(N) and lim, o ay = oo. The Ey 4 term is
bounded above in Step 3, while in Step 4 we provide a sharp estimate of My 4, and we
conclude the proof by computing the pre-factors in the estimate of Pg(Vy ,52)-

5.1 Step 1

The aim of this step is to prove the following Proposition, which is a strong improvement
of [4,Proposition 2.3] since we bound from above the gap between discrete quantities and
their continuous counterparts by n 2 instead of n~'. As mentioned in Remark 4.7 above,
our proof is close in spirit to that of [15,Theorem 2], in particular for Proposition 5.4 below.
Recall the definitions of v, , and J from (5.4) and (2.5) respectively, and notice that g +—>
%wn,hz (qnz, 0) (resp. g — J(q)) is the Legendre transform of G,, (resp. G).

Proposition 5.1 For [q1, g2] C (0, 00), there exists constants C > 0 and no € N such that
foreveryn > ngand q € [q1,q2] N %’

1 2 ~ C
;l”n,hz(qn 0 =v(@)| < ek (5.10)
and c
i —nt| < . (5.11)
n

We recall (5.3) and (5.9) where the definitions of G, and G are displayed respectively. Let
us first claim two lemmata which state that g; and G’ are Cl—diffeomorphisms.

Lemma5.2 For every n > 2, the function G, is C*, strictly convex, even and satisfies
G, (h) - +ocoash / % Moreover, there exists R > 0 such that (G,)" (h) > R for every

n>2andh € (—nril , %). As a consequence, (Gp) is an increasing C' diffeomorphism

from (=L By 1o R and (G,)' (0) = 0.

n—1° n—1

Lemma 5.3 The function G is C*, strictly convex, even and satisfies G'(h) — +ooash /' B.
Moreover, there exists an R > 0 such that (G)"(h) > R for h € (=, B). As a consequence,
(G)' is an increasing C' diffeomorphism from (— B, B) to R and (G)'(0) = 0.
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Those results are straightforward consequences of (2.2), so we do not detail them any further.
Let us then recall that A is the unique solution in 4 of (G,)' (h) = g and that R4 is the unique
solution in & of G'(h) = ¢. At this stage, we state a key result which substantially improves
[4,Lemma 5.1] and [8,(4.7)], giving an upper bound of order n~2 instead of n=!. Its proof is
postponed to Appendix A.2.

Proposition 5.4 For every K € (0, B), there exist a Cx > 0 and a ng € N such that for
Jj €10, 1}
sup G () — GV ()| < =5 Vn = nk. (5.12)
he[—B+K,B—K] n

With the help of Lemma 5.3 we can state the following corollary of Proposition 5.4.

Corollary 5.5 For every M > 0, there exists a K > 0 such that G(B—K)>2M and
g (K) < ﬁ; and there exists an ng € N such that G,(f — K) > M and G, (K) < %for
every n > ny.

Remark 5.6 A straightforward consequence of Corollary 5.5 is that for [¢q1, ¢2] C (0, o0)
there exists a K > 0 and an no € N such that for every ¢ € [q1, ¢2] and every n > ng
we have h{, h e [K, B — K]. Moreover, since £ is C* on (—f8/2, /2) we deduce for
jeNU{0}and 0 < g1 < g2 < 400,

sup Hﬁ(j)(hz(% —x))

; x €10, 11, g € [q1, 921, neN} < +o00.

Proof of Proposition 5.1 We now have all the required tools in hand to prove Proposition
5.1. By using Lemma 5.3, Proposition 5.4 and Remark 5.6, we can state that there exist
K > 0,C > 0and R > 0 such that for n large enough and ¢ € [g1, g2] N N/n® we have
hi h e [K,B — K], so

7 1 " Z 1 / o
=T = | [, 9war| = gl g

1, ) C
AR AN A )

where we have used that g = G’ (ﬁq ) =G, (h) for the second equality in (5.13). The proof
of (5.11) is therefore completed.
It remains to prove (5.10). To that aim we write

g — Gu(h) — 1 g + G| < Un g + qo|hid — R, (5.14)

where U, ; := |Gy (hdy — g(ﬁ4)|. Proposition 5.4 also tells us that there exists a C > 0 such
that for n large enough and for every x € [K, 8 — K] we have |G, (x) —G(x)| < C/n?®. Thus,
since G is C! and recalling Remark 5.6 we can write

IA

Ung < |Gu(h) — G| + |G () — G(RD)|

%+sup{|g’(x)|,xe[K,ﬂ—K]}|hz—ﬁ‘1\. (5.15)
n

IA

At this stage, (5.10) is obtained by combining (5.14) with (5.11) and (5.15). This completes
the proof of Proposition 5.1. O
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5.2 Step 2

We recall (4.17) and (5.4) and we pick a sequence ay € N, N € Nsuchthatlog N < ay <
/N. We define the two boxes

Cy = [EN,hj’V(XaN) — (an)*4, Ey ng (Xay) + (an)**],
Dy = [Ey 4q (Aay) = @)% By 49 (Aay) + (@n)"*]. (5.16)

and rewrite Pg(Vy ,n52) = MN g + EN,q Where

My 4 = Pﬁ[VNquz N {XaN eCy, Ayy € 'DN} N {XN—aN €CN, AN — AN_ay—1 € DN}]
(5.17)

From now on, My 4 is referred to as the main term and Ey 4 as the error term. The proof
of Proposition 4.6 is a straightforward consequence of Lemmata 5.7-5.8 displayed below,
which are proven in Steps 3 and 4, respectively.

Let us start with the following Lemma, which allows us to control the error therm uniformly
in ¢ belonging to any compact set of (0, 00).

Lemma5.7 For [q1,q2] C (0, 00), there exists & : N +— R such that limy_, &(N) = 0
and for every N € Nand q € [q1, ¢2] N ﬁ

(5.18)

With the next Lemma, we estimate the main therm uniformly in ¢ belonging to any
compact set of (0, 0o). Recall (2.8) and (2.6) for the definitions of « and .

Lemma 5.8 For 8 > 0 and |[q1, q2] C (0, 00),

1

~ Tq\\ "2 _
My = (") % VD (14 0(1)), (5.19)

where o(1) is a function that converges to 0 as N — oo uniformly in q € [q1, g2] N %.

5.3 Step 3: Proof of Lemma 5.7

Before starting the proof, let us make a quick remark about the time-reversibility of the
random walk X of law P,, ;.

Remark 5.9 (Time-reversal property) Recall the definition of l~)h from (2.~7). For h €
(—=B/2,B/2), one can easily check that if Z is a random variable of law P_; then —Z
has law Pj,. Moreover, as explained below (5.4), if the n-step random walk X := (X i):'l=0

has law P, j,, then its increments (X; — X;_1)"_, are independent and for i € {1, ..., n}

i=1
the law of X; — X;_; is P with parameter %(1 — z’n—_l). A first consequence is that X is
time-reversible, i.e.,
(Xi),r'l:() = (ani - Xn)?:()- (5'20)
Law
A second consequence is that, under P, ;,, the random walk (X;)?_, is an inhomogeneous

Markov chain which, for j € {1,...,N —1},y € Zand O C 771 satisfies that

Poi((Xj)i—] €0, Xy =01 X; =y) = Pus(Xuejmi)i={ ' €O, Xuej = ).
(5.21)
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Note finally that the case 7 = 0 corresponds to the random walk X with i.i.d. increments of
law Pg.

A straightforward application of (5.20) with n = N and 2 = 0 allows us to bound the
error term from above as

Eng <2Ps(Vy gn2 N {Xay ¢ Cn}) +2Ps(Vy gv2 N {Aay ¢ Di}). (5.22)
Using (5.4) we obtain that for B = {X,, ¢ Cn}or B={A,, ¢ Dy}

- N2.0
. WN'I’[}V (q )

Pg(Vy gn2 NB) < Pyt WV gn2 NB). (5.23)

Note that, the first inequality in Proposition 5.1 allows us to replace ¥ ne, (gNZ, 0) with

N J(q) in the exponential of the r.h.s. in (5.23), at the cost of an at most constant factor.
Therefore, the proof of Lemma 5.7 is completed by the following Claim.

Claim 5.10 For [q1, 2] C (0, 00), there exists & : N — RT such that limy_, o &(N) = 0
and for every N € Nand q € [q1, ¢2]1 N %

£(N)
Py st Vi O {Xay O+ Py ja Wy vz DAy £ DD < =03 (5:24)

Proof Let us prove that (5.24) holds true for Ry 4 := PN’hj[V (VNquz N{Xay ¢ Cn}) and for
Sn.g =Pyt Wy gz N {Aay ¢ DD

Weset {X[j 1 >0} :={X; >0,j <i <k}forj <k € N.Wedevelop Ry , depending
on the values y and z taken by X,, and A,, respectively. Then we use Markov property at
time ay, combined with the time reversal property (5.21) withn = N, h = h‘fv j = ay and

N—j—1
0= {x e NV-i-1. Z X =qN2—z},
i=1

on the time interval [ay, N] to obtain

RN,q = Z ZPN,h?V(XaN =Y, AaN =2, X[],aNJ > 0)
yeN\Cy zeN
X PN,h;iV(X[l,NfaN] >0, XN_ay =Y, AN—ay—1 = gN* —72).
(5.25)
Let Ry, = Rng4(yl < N/ay,lz| < N*/an), Ry, = Rnq(yl > N/ay) and

R?v ¢ = Ry, q(z] > Nz/aN), where Ry ,(A) denotes the sum from (5.25) restricted to
terms satisfying the condition A; so that

Rvg < Ry, + Ry, +RY, (5.26)
Let us prove the upper bound (5.24) for all three terms in the r.h.s., starting with R11v .

Lemma5.11 For [q1, q2] C (0, 00), there exists a C > 0 such that for every N > 1 and
q €lq1,q21N 35 and (v, 2) € Z* with |y| < N/ay, |z| < N*/aw,

Py it (XN-ay = ¥, AN-ay-1 = gN* = 2) < (5.27)

N2
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We prove this Lemma afterwards. Plugging this in the development (5.25) and dropping
the condition X[j 4,] > 0, we obtain

c
Ri.q = 3z Puosg, Koy #CN). (5.28)

Recalling (5.4) and the subsequent remark, a straightforward computation gives us that
aN h‘[ .
Vary i (Xan) = 3 £/(50 = 25h) (5.29)
i=1

where we used, for U distributed as ﬁs and |8| < B/2, Var(U) = L"(8) (recall (2.7)). By
using Tchebychev inequality we obtain

Po.sg, Xy # €)= Py (X = By g, Xay)| = (@)™)

< =75 Vary g, (Xay)
an

5t-)

1
< ——= sup
a]l\,/2 x€[0,1]

(const.)

Jan

where the last inequality is a consequence of Remark 5.6; in particular the constant is uniform
in N € Nand g € [g1,¢2] N %. It remains to combine (5.28) and (5.30) to complete the

(5.30)

proof for Rzlv e

Regarding R2 e let (U;);>1 be the increments of the process X. Recalling (5.4) and
applying a Chernov inequality for some A > 0 small, we have

Y Pyt Xay =y Aay =2 Xpiay) > 0)
y>N/ay

= PNJ’?V (XaN > N/aN)

Ego |:exp ()»(XuN — N/an) + %Ul(%(] - Zi]; 1)) - ﬁ(%(] h 21‘1\7 1))>:|

i=1

IA

AN
< e—)LN/aNecaN < Ce 2N , (531)

for some ¢ > 0, C > 0, which can be taken uniformly in g € [q1, g2]. The same upper bound
holds for the sum over y < —N /ay, hence

Rlzv,q < Z Pyt (AN—ay-1 = gN? —2)

€L

x ) Pyt (Xay = . Aay = 2 X[1ay] > 0)
IyI>N /ax

AN
< 2Ce *n. (5.32)
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The last term R?V, , can be handled similarly, by noticing that A,, > N?/ay implies
X > Nz/alzv for some 1 <i < ay, thereby

Y Pyt Xay =, Aay =2, Xi1ay) > 0)
Z>N2/aN
ANZZ
< Py g (Aay > N?/ay) < ZPth (X; > N*/ak) < Caye ™V,
i=1

where we reproduced (5.31). Similarly to (5.32), we obtain an upper bound on R and
recollecting (5.26) with (5.28), (5.30) and (5.32), this finally proves (5.24) for Ry 4.

Let us now consider Sy 4, which we develop similarly to (5.25). Notice that the term
Sn,q(y ¢ Cy) is already bounded from above by Ry 4, and that Sy . (|z| > N2/ay) follows
the same upper bound as R3 (We do not replicate the proof), thus we only have to prove
(5.24) for S1 Ng = = Sng(y e Cy,lzl < N%/ay) to complete the proof of Claim 5.10.
Recalling Lemma 5.11, we have

C
Sll\’,q = WPN,h‘;,(AaN ¢ Dy) . (5.33)

Let (U;);>1 denote the increments of the process X, and recall A,,, = Zl“g | X;;in particular,
we may rewrite A, = Zi”:" ((ay +1—=10)U;. Similarly to (5.29), a direct computation gives

VarN,hq aN Z(d}\/ +1—1) ﬁ”( N (] — 2i— 1))

and using Tchebychev inequality, we obtain
1

Py nt (Aay € DN) = e Vary 41 (Aay)
N

=

(4 o)

1
—— sup
all\,/2 x€[0,1]

(const.)

AN ’

for some constant uniform in N € N and g € [g1,¢2] N N2, where the last inequality is
a consequence of Remark 5.6. Combining this with (5.33), this concludes the proof of the
Claim. O

(5.34)

Proof of Lemma 5.11 To lighten upcoming formulae in this proof, let us write N| := N —ay.
Recall (5.4), and that Pg , denotes the law of the random walk starting from y € Z with
increments distributed as Pg. Summing over possible values for (Xy, Ay_1) and using
Markov property, we write

Py s, (XN, =y, Ay =gN? = 2)

Y Py Xy =y Ay—1 =gN? =z, Xy =u, Ay_1 = v)
(u,v)eZ?

Yy pa (0,u)
= Z e MNPy (X, = v, Anj—1 = qN? — 2, Xy = u, Ay—1 = V)

(u,v)eZ?
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Yy pa W)
= Y e "N TPgo(Xyy =y, Ay = qN? — )Pgy (Xay

(u,v)eZ?
=u,Agy—1 =0 — qu +z—y) = PNl,h‘;,l (Xn,
— _ 2 2
=y A =aN? =2 x Y exp (Vg (00 = Uy, g @V = 29) Py (Xay
(u,v)e??
=u, Agy_1 =v—gN>+2—y), (5.35)

where we obtained the third equality by splitting the walk at time N, requiring the second
bit to start from height y and to coveranareav— Ay, -1 — Xy, = v — gN?+z—y (recall the
definition of A, (X),n € N from (2.4)). A straightforward consequence of Proposition 6.1
and Remark 6.2 from Appendix A.1 is that the first factor is uniformly controlled by % for
some uniform C > 0, so it remains to prove that the second factor is uniformly bounded. We
notice

Pﬁ,y(XaN =u, AaN—l =V _qN2 +z _y) = Pﬂ,O(XaN =u-— yvAaN—l
=v—gN’+z—-yay),

so the sum in (5.35) can be written as

Epo [exp (Vg (Aay—1 +aN* =2+ yan, Xay +) - Unpg, @N* = 2, »)].
(5.36)
Furthermore, we claim that for all ¢ € R,

L(h/2) — qh? —G(h?) = 0. (5.37)

Indeed,

1
—/ (Y — ) dy + LR /2)
0
1 1
/ / ﬁqﬁ’(zq(u—%))dudy
0 Jy

1
= hq/ uﬁ’(ﬁq(u - %))du
0

N g/(gq) . q,

£(n/2) — G(n%)

where we have used that £ is even to obtain the second line and that 47 is solution in & of
G’ (h) = q (recall Step 1) to obtain the last line.

Recollecting (5.35-5.37), Proposition 5.1 and the definition of G (5.9), we deduce from
a direct computation that there exists No € N and a C; > 0 uniform in ¢ € [g1, g2] N %,

N > Np and |y| < N/ap, |z] < Nz/aN such that

P/v,h‘}v XN, =y, AN—1 = qu —2)
Cl _ ~, ~ A - Eq
< yre " Br [eXp (W% -5 Xa (1-F)) | 639
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Finally, we conclude the proof of Lemma 5.11 by showing that the latter factor is bounded
from above by e~ £(1?/2) 1 et (U}) j=1 be the increments of X, andrecall A,,, = Z?ﬁ] (ay +
1 —i)U;. Then,

~, Aay—1 Eq
Eg o [exp (yﬂ’# =5 Xay (1= %))]

Eg o {em (Z Uih'( =3+ 3lan +3 - D))}

=1

(Ch(= 5+ Fan+3— 1))

I

—
a
5

j=1
< eWLE) (5.39)
where we used that £ is even and increasing on [0, 8/2) (recall (2.2)). O

5.4 Step 4: Proof of Lemma 5.8

Outline of the proof of Lemma 5.8. Recall (5.16-5.17). For conciseness, from now on we set
h:=h%/2, x = (x1,x2) and a = (a1, a2), and we also define

Hy = {(},a) € Cx x D}}. (5.40)

Let us decompose My , by summing over possible values of X,,,Xy_—4y € Cy and
Auy, AN — Ay_ay € Dy. Using Markov property at times ay and N — ay, and apply-
ing time-reversibility on the part of the walk between times N — ay and N (i.e., (5.20) with
n = ay and h = 0), we may write

Myg = Y Ry(i,a)Ty(E a) Ry(x,a), (5.41)
(x,a)eHy
with
Ry(x,a) = P/S,O(X[l,aN] > 0, XaN =X, AaN =a), (5.42)

and, after setting Nop = N — 2ay,

Ty(%,ad) = Pgo(Xn, = x2—x1, Any—1 = gN*—a1—ar—x1(N2—1), X[o.n,] > —x1).
(5.43)
Then, the proof of Lemma 5.8 is divided into three steps.

(a) We perform a change of measure in Ry (x1, a1), Ry (x2, az) by tilting every increment
(Xiy1—X; )f‘ﬁ 0 ! uniformly with IN’;, ,andin Ty (x, a) by applying the tilting introduced in
(5.4) with coefficients (N3, h?\,z). We prove that the combined exponential factors given
by those changes of measure are equivalent to exp(—N J(q)).

(b) Then we estimate Ty (X, @) under its tilted distribution by using the local limit theorem
for the vector (Xy,, An,—1) displayed in Proposition 6.1, and by observing that the
additional constraint X, n,] > —x does not alter the asymptotics.

(c) Finally, after recombining the sum in My 4, we observe that it only remains to estimate
the probability that a random walk under the biased law P}, remains positive, which has
an explicit, positive limit.

Step (a). We begin with Ry (x1, ar) and Ry (x2, a2). Recalling (2.7), we perform a change
of measure by tilting every increment (X;y| — X,‘)im:vof ' with P;, that is for (x,a) €

@ Springer



A Sharp Asymptotics of the Partition Function for the Collapsed... Page 27 of36 41

{(x1,a1), (x2, a2)},
Ry(x,a) := e WHNEW P, (X, > 0,Vi < ay, Xay =X, Agy = a) . (5.44)

For the second factor T (x, a) we apply the tilting introduced in (5.4) and we obtain

hq
q (aN“—aj—ay _ _ L N (L _ q
Ty (%, @) = G;’, . e—hNQ( N, "1(1 Nz)) et 2 (1 Nz)(XZ x1)+N2 gNz(hN2)7 (5.45)

with
24—
Gl ra = Prast, [An, = (25854 — (1= 55), w2 = 31), Xio.vay > —1]. (5.46)
Gathering (5.41), (5.44) and (5.45), we obtain

BI = BZ =\ o~
My, = Z BN @F N’q(X)Ph(X[l,aN] >0, Xay = X1, Aay =a1) G,
(x,a)eHy

,X,a

X Py(X1.ay] > 0, Xay = X2, Aqy = a2), (5.47)
with

_ 2_g1—
By ,(@) = NaGn,(h) +2an L(h) — hf, 1=

B} , () == (xi +xz)[ 2 (1 1) —h]. (5.48)

Remark 5.12 We claim that the expected values of X,, under f’h and Py ne, are very close.
Indeed, notice that Eh (X1) = L'(h) (so Eh (Xay) = an L' (h)), so recalling Remark 5.6 and
(5.11), we write

an
Jan £/(h) = By g (Xap)| = | 32 £/h) -

i=1

<Z

x|

hY,(1— N)——N(l—ﬂ

L/(hq /( hN(l 21))‘

an
< max |£"(x)] ¥
i=1 XE[%‘ﬁT] ( N)
2
< (const.) (N— + (a];\\;) ) , (5.49)

which goes to 0 as N — oo. In particular, there exist ¢y, ¢c3, No > 0 such that ¢; ay <
x <cy ay foreveryx € Cy,q € [q1,q2] and N > Ny (recall (5.16), and notice that £ ()
is uniformly bounded away from 0). Moreover, a similar argument yields that E; 04, (Aay)

remains close to £’ (h)a]zv /2, hence every a € Dy satisfies |a| < (const.) alzv (we do not write
the details here).

Recalling (2.5), let us prove that

By @+ By ,(5) = =N ¥(q)+o(l), (5.50)
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Henceforth, we drop the a and x dependency of B 11\/ 4 (a) and Blzv’ p (x) for conciseness. Let
us first consider B,zvy e We recall that i = 74 /2, thus

~  h
Bg‘q:xlzm (hjfh—hQ—Ni;), (5.51)
which allows us to write the upper bound
il bl (g L [ ay
Byl = =5 (\th —h —22) < (const) - (5.52)

where we used Proposition 5.1, Remark 5.12 and that |h?v2| < B. Therefore, BIQ\,, 4 converges
to 0 as N — oo uniformly in g € [q1, g2].

Now, we consider Bl . We recall the definition of Dy in (5.16), and using Remark 5.12
we write on the one hand

qu —a; —ap
N>

2
@v) ) , (5.53)

—gN+2 ¢ aN+0< S
and on the other hand,
Ny Gy () +2an L(R1/2) =k, (@ N+2 g ay)
= N[0 — R g+ 0(ky) | + 2an [£G1/2) =20 g+ 0(k)]
= N[G(RT) —h? q)+2an[LR?/2) = kT g —GHD]+ O(), (5.54)

which, by (5.10) and (5.11), holds uniformly in N > Ng and ¢ € [g1, g2]N N2 , provided Ny
is chosen large enough. Plugging together (5.53) and (5.54), and recalling (5.37), we obtain
B), Ng = —N¥(g) +o(1), which finishes the proof of (5.50).

Step ( b ). Recall (5.46): the aim of this step is to prove the following lemma.

Lemma5.13 For 8 > 0,

~ 1
4 hq -2
Gfé,)z,a = %(1 +o(1)), (5.55)

where o(1) is a function that converges to O as N — oo uniformly in g € [q1, g2] N % and
(x,a) € Hn.

Proof Let us first relax the constraint {Xjo n,] > —x1} in G;f, a0 define

— 2_ 40—
Clica = Prou, [An, = (15854 — (1= ), 2 =) | (5.56)

2

Using the local limit theorem from Proposition 6.1, we prove that G v.5.a satisfies (5.55).

Indeed, defining y = q(N2 (N2)2)—a; —
implies

then Proposition 6.1

2~4 - ) 4
sup |(N2) GN,)?,& - fh(q,o)((Nzy)yz ) \/i\,—zﬂ Nj;o 0, (5.57)
qE[qw/z]ﬂ%

where for h € Dg, fj is the density function of a bivariate, centered Gaussian vector with
covariance matrix Hess £ 4 (k) (see Appendix A.1 for more details). Moreover, notice that
— (N3)? <4 N ay. Thus, Remark 5.12 yields that, for some C, Ny sufficiently large,

[yl aN_ g |z]

c2L I
(N)¥2 = "N I f

for (x,a) € Hy, q € [q1.q2]1, N = Np.
(5.58)
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Recalling ay = o(+/N) and Remark 6.2, we have the uniform convergence

sup sup
q€lq1.q2] (x,a)eHy

fZ(q,O)((NZ);3/2 , ﬁ) - fZ(q,O)(O’ 0) Nj;o 0. (5.59)

At this stage, we complete the proof of (5.55) for Gﬁ, 7.g by observing that Ny ~ N as
N — oo, that fi, 4,(0,0) = 9 (h?)~"/2 51 and by combining (5.57) and (5.59) with the
fact that ff 7.0) is bounded from above on R?, uniformly in ¢ € [g1, g2].

Regarding G;{,’ 7.a» let us define

Ny—1
Gl = 2 Prog, (X =02 —x1, Xi < —craw), (5.60)
i=1

where c; is defined in Remark 5.12; hence

Gh..>G}..>G}

N,x,a N,x,a — N,x,a

~ Gl ;. (5.61)
Thereby, the proof of Lemma 5.13 will be complete once we show that N2 6;{, : = o(l).
Since |x; —x2| < 2(:11\/)3/4 we have that, for N large enough, —cjay +x1 —x2 < —cjay/2.
Thus, fori € {%, ..., Ny —1}, the time-reversal property (5.20) (withn = Ny and h = h?\’z)

gives

PNz,h‘;]Vz (XN2 =x —x1,X; < —claN) < Psth‘;]Vz (Xszi < —%aN) . (5.62)

Coming back to (5.60) and using (5.62) for i > N, /2 we can bound 6,‘{, ¢ from above as

N2/2 reray V22
a4 . -+ —AX;
Ghz=<2 EPNZ% (Xi < —%ay) <2e 2 X;ENz,h%z(e ), (5.63)
1= 1=
forsome A > 0, where we used a Chernov inequality. We claim that the latter sum is uniformly
bounded, therefore this concludes the proof of Lemma 5.13 (recall that ay > log N). This
follows directly from the following lemma, which was already proven in [4] (we do not
reproduce the computations here). O

Lemma 5.14 [4,Lemma 6.2] For [q1,q2] C (0, 00), there exist three positive constants
C’, C1, A such that for N large enough, the following bound holds true

EN,h?V[ef)‘Xf] <C'e I, for j<¥and g elq,q]n %.

Step (c). By plugging (5.50) and Lemma 5.13 into (5.47), we obtain

1

(17(5[{))77 NU(q) 1f
— —Nv(q)
My 4 = (1+0(1)) 7 N2 e My g, (5.64)
wih ] ]
My 4 = Z Pr(X(1.ay1 > 0, Xay = x1, Agy = a1) Pn(X[1,ay] > 0, Xay = x2, Agy = a2)
(F.a)eHy
5 2
= [Pr(X[1,ay] > 0, Xay €CnN, Aay € DV, (5.65)

where we recall the definitions of C, Dy from (5.16), and that & = ht /2. Recall also that
we defined «(x) = ﬁx (X[1,00) > 0) for x € [0, B/2) (see (2.8)). Therefore, the proof of
Lemma 5.8 is completed by the following lemma, and by recalling from Remark 5.6 that &
is bounded away from O uniformly in ¢ € [g1, g2]. Lemma 5.15 is proven afterwards. O
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Lemma5.15 (i) For § > 0 and x € [0, B/2), one has

e —1

K(x) = €x+ﬁ/2 1 ’ (5.66)
in particular « is continuous, increasing on [0, 8/2), and positive on (0, 8/2).
(ii) For B > 0, one has
P (X(1.ay1 > 0, Xay € Cn, Aay € D) = k() +o(1), (5.67)

where o(1) is a function that converges to 0 as N — oo uniformly in q € [q1, q2].

Proof of Lemma 5.15 (i) Pick x € [0, 8/2) and define p = inf{i > 1, X; < 0}, hence
1—k(x) = P(p < 00) = Eﬁ[exxf)_ﬁ(x)pl{p@o}] = E,g[exx/’_ﬁ(x)p],

where we used (2.7) and that p < 00 Pg-a.s.. As claimed in the proof of Lemma 3.2, p and
X, are independent, and —X , follows a geometric law on NU {0} with parameter 1 — e P2,
Similarly to (3.24), (e=*X»=£(Im), | is a martingale under Py (recall that £ is even), and
it is uniformly integrable when stopped at time p; thus Doob’s Optional Stopping Theorem
yields that

B[] = Bple %]

Thereby,
_ B2
P X —xX,1-1 1-e

=) = Pu(p < 00) = Eg[e™ [Bg[e ] = ————575,

which yields (5.66).
(ii) We write
‘ﬁh(x[l,a/v] >0, Xay € Cn, Aay € Dn) — K(h)‘
= [P Xiany = 0 = k)| + PaXay 2C0) + PuAay D). (5.68)

and we claim that all three terms in the r.h.s. above go to 0 as N — oo uniformly in
q € lq1, q2].

We start with the first term in (5.68). Recalling Remark 5.6, there exist K > 0 such that
hel[K,B— K]forall g € [q1, g2]. Then we write with a Chernov inequality,

o0 [ee)
0<PiXpay1 >0 —k() < D Pu(X; 0) < ) e EOLO=K,
Jj=an+1 j=an+1

(5.69)

and since L is convex and increasing, £L(h) — L(h — K/2) > L/(K /2)% > 0. Therefore,
the r.h.s. in (5.69) converges to 0 as N — oo uniformly in g € [¢1, ¢2].

Regarding the second term in (5.68), (5.16) and Remark 5.12 imply for N sufficiently
large,

{Xay ¢ OV} C (1Xay = L'(0) ay| = 3@an)™*y, (5.70)
where we recall Eh (X1) = L/(h). Then, Chernov inequality gives for t > 0,
Bi(Xay = £ an + 3@ = exp (an (L0 +1) = L) = 1£/() = 1ha*)
5.71)
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Recalling (2.2) and Remark 5.6, there exists ¢ > O such that L(h+1)—L(h)—tL/ (h) < ¢ 12
—1/4—¢

for ¢ small enough, uniformly in g € [g1, g2]. Letting e > Oand t = ay , we obtain for
N sufficiently large and some ¢’ > 0,

~ s 1/2—e

Py(Xay = L'(h) ay + $an)*) < eV | (5.72)

uniformly in g € [g1, g2]. The same bound holds for the event { X, < £'(h)ay —(an)¥/*}
(we do not write the details again), and recollecting (5.70) this proves that the second term
in (5.68) goes to 0 as N — oo uniformly in g € [g1, 2]

Finally, the third term in (5.68) is handled very similarly, first by observing that (5.16)
and Remark 5.12 imply

{Aay € DN} C {|Aay — L' (h) ay /2] = 3(an)*}, (5.73)

then by writing a Chernov inequality with Ay, = >_2¥ (ay+1—i) U;, where (U;){Y, ~ P,
are i.i.d.. Details are left to the reader. O

6 Proof of Theorem 2.2

We recall (3.8-3.11) and Remark 3.1. For an event A we denote by Z; g(A) the partition
function restricted to trajectories in A N £27, i.e.,

Zip(Ay= Y M.
(AN,

For L € N, the function k PL,,g(|Imax(Z)| > L — k) is non decreasing. Therefore,
proving (2.15) with Pp g(|Imax(¢)] = L — 3k) implies the result. Pick ¢ € £, and let
Jik :=max{j > 0: X; < k}. Note that, if £ € £ has no bead starting in {k, ..., L —k}
and if the last bead of ¢ starting before k begins with at most k — 1 horizontal steps, then the
longest sequence of non-zero vertical stretches of alternating signs in £ has a total length at
least L — 3k, i.e.,

Apk N Brg C {[Imax(©)] = L — 3k} ©.1)

with
Arp:={e2r: XNnik,....L —k} =0}
Brr:={le$2: EIje{l,...,k}:erk+j7$0}. (6.2)
Since k — P g (|Imax (€)| > L — 3k) is non decreasing and since (6.1) yields
{max (O] = L =3k} C (ALx) U (ALx N (BL)),

it follows that Theorem 2.2 will be proven once we show that for every ¢ > 0 there exists a
k. € Nand a L, € N such that on the one hand L, > 3k, and on the other hand, for L > L.,

Prg((Apk)) <e and Prg(ALk N(BLi)) <e. (6.3)
For simplicity let us write o = —Gi (ap). A straightforward consequence of Theorem 2.1
and Corollary 4.2 is that there exists 0 < C; < Cp < oo such that for every L € N,
Cl oV _ 5o C2 pr—ovE
me < L.B SZL,ﬂfme . (64)
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Thus for k, L € N such that L > 3k we can write

L—k
Prp((AL ") Z Prp(j € X) Z ZS 5 Ziojpts = 0)
j=k
| Lk
=7 Z ZjgZr-j.p
ZLp i
< (const.) VL 34 Z e~ Vi ; e—VIL=j
= 3/4 (L _ j)3/4
Lk 3/4
L . :
< (const.) Z AL e~ WTHVI=]~VD)
L/2 o
1 @i 1 aj
< (const.) Z =y e < (const.) Z =7 e*T’, (6.5)
— j L
j=k =k

where in the second line we have used (6.4) and in the last line we have used the convex
inequality: VL-JL=j < %ﬁforO < j < L/2.Since the r.h.s. in (6.5) does not depend
on L and vanishes as k — oo, the leftmost inequality in (6.3) is proven.

Let us now deal with the second inequality in (6.3). For L > 3k, we partition the set
Ap kN (B k)¢ by recording r (respectively s), the rightmost (resp. leftmost) point in X that
is smaller than k (resp. larger than L — k). Moreover, the fact that £ € (B x)¢ implies that the

bead which covers the interval {k, ..., L — k} begins with k zero-length vertical stretches.
Thus,
k—1 L
ZLg(ALaNBL)) =Y > Zrg{Xnir.....s}={r,s} N (BL)")
r=0 s=L—k+1
=YY Zf 7o, g ==l =0) Zp s p(0) = 0)
r=0s=L—k+1
<22 Z Z vrkﬂZL vﬁ(£l>0)
r=0 s=L—k+1
=2Z,wp{X0{r,....,s —k} ={r,s —k}}), (6.6)
where the third line in (6.6) is obtained by observing that Z ]9’ ,3(51 = =4, =0) <

27 ;Lk 8 for j > k + 2. The factor 2 in the r.h.s. of the latter inequality comes from the

fact that there is no constraint on the sign of the (k + 1)-th stretch of £ € Q° satisfying
£y = --- = £y = 0. The r.h.s. in the fourth line of (6.6) is obviously bounded above by
2 Z—,p and therefore,

Zpg(AL kN (BLx)S) _2Z1-kp

= (6.7)
VAN VAN

Prg(Apx N (BL)©) =
It remains to use (6.4) so that (6.7) becomes

L3/4
—Bk ,—a(L—k—+/L)
Prp(ALk N (BLi)) < (const) (L —xpac e *
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< (const.) e Pkemov L—k=VL) (6.8)
For ¢ > 0 we pick k. € N such that (const.) e P% < ¢/2. Moreover, a straightforward

computation gives us that limy o, ~/L — ks — +/L = 0. This completes the proof of the
rightmost inequality in (6.3) and ends the proof of Theorem 2.2.

Acknowledgements The authors thank the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an
attractive mathematical environment.

A Appendix
A.1 Local Limit Theorem for Large Swiped Areas

In this section we provide a local limit theorem for random walks under distributions Py, ;,
(recall (5.4)), for which events such as {%An (X) = (¢,0)}, g > 0 become typical. This
theorem was proven in [8,Theorem 4.2] and then refined in [4,Proposition 6.1] by showing
that the convergence holds uniformly in ¢ € [g1, ¢2]. It is required to prove Proposition 4.6,
more precisely for Lemmata 5.7-5.8.

Recall (5.5-5.8), and set

B(h) := Hess Lo(h), heDg. (A1)

For g € R, we consider the density function of a centered Gaussian vector distribution with
covariance matrix B(k(q, 0)),

(Det(B(h(g, 0))))"'/2

o exp(— L(B(h(g.0) 7. 5). PR (A2)

Jitq.0®) =

This latter expression is well-posed: indeed, from the definition of £ (2.2) we deduce easily
that £”(h) > 0 for h € (—B/2, B/2). As a consequence, we can rule out the equality case
when applying the Cauchy—Schwartz inequality to (2.6), so we deduce

#(h%) = Det(B(h(q,0))) > 0, qeR. (A3)

Proposition 6.1 [4,Proposition 6.1] For [q1, g2] C (0, 00), we have

sup sup ]nz P, 4 (A1 = g +y, X, =2) — fZ(q,O)(,,ByT’ ﬁﬂ — 0.

n—oo
qE[quqz]ﬂ% y.2€Z

Rergark 6.2 Recall (A.1-A.3). Since L, is convex on Dg, (A.3) is sufficient to assert that
B(h(q, 0)) is a symmetric positive-definite matrix for every ¢ € R. Thus, the eigenvalues
of B(k(g, 0)) are positive and continuous in ¢ € R. This yields that, for [q1, g2] C (0, 00),
the eigenvalues of B(k(g, 0)) are bounded above and below by positive constants that are
uniform in ¢ € [q1, g2]. Therefore, there exists a compact subset £ C (0, oo) such that
z?(ﬁq) e K forevery g € [q1, g2]. From (A.2), the latter implies that f,;( 2.0) is bounded from

above on R? , uniformly in ¢ € [¢1, g2].
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A.2 Proof of Proposition 5.4
Let us start with the case j = 0. We recall (5.3) and we set
I =LEA+ ) —h5), (A4)

and therefore NGy (h) = ZlN: 1 fn.n(@). We apply the Euler—-Maclaurin summation formula
(see e.g. [17,Theorem 0.7]) and since fy j is C? we obtain that

NG,(h) = A(N,h) + B(N, h), (A.5)
with N
AN, By = T2 D ;f’“(N ) / ) dx, (A6)
1
and
1 N
B(N, h) := 3 /1 Inn ) (B2(0) — Ba(x — |x])) dx (A7)

where B; is the second Bernoulli polynomial.
We start by considering A(N, h). Recalling the definition of £ in (2.2) and the fact that
Py is symmetric, we claim that £ is even and therefore

1 N h h

Ina(D) + fv (V) :[’(,_7)_ (A8)

2 2 2N
We recall the definition of G in (5.9) and a straightforward computation gives
N 1-1/2N
f fun@)dx =N L(h(3 = y)dy
1 1/2N
1/2N
= NG(h) — 2N / L(h(5 —2)dz, (A9)
0

where we have used the change of variable y = x/N to get the first equality and the parity of £
combined with the change of variable z = 1 — y to obtain the second equality. Obviously, for
N large enough and forevery h € [—+ K, B — K] we have that both % and %(1 — %) belong

toRg :=[— g + % g — g] Recalling Remark 5.6, we set C, := max{|£'(x)|, x € Rk}
and for N large enough

‘L(h h ) Li(h)’ <c M g ! (A.10)
2 2N 21— Koy =P KN '
and

1/2N 1/2N 1
‘ZN/ £(h(% —2z))dz — E(%)‘ < 2N/ Cyx |hlzdz < BCx T (A.11)
0 0

Combining (A.8-A.11) we claim that, for N large enough
|A(N,h)—Ng(h)|§ﬁC}<%, Vhel[-B+K,B—-K]. (A.12)

It remains to consider B(N, h) (recall (A.7)). To that aim, we compute the second derivative
of fy , and obtain

a0 =2 ha+ 5y —ny], xell,N]. (A.13)
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It turns out that for x € [1, N we have |41+ 4) —h%| < . Thus, i € [-B+K, — K]
yields %(14—%)—!1% € Rk, sorecalling Remark 5.6 we set C}, := max{|L"(x)|, x € Rg}
and we obtain |f1’\;,h(x)| < C}Q,BZ/NQ. As a consequence, we can use (A.7) to write
ﬂZ
|B(N,h)| < C}Qﬁ max{|B(u)|, u € [0, 1]} . (A.14)

At this stage, it remains to combine (A.5), (A.12) and (A.14) to complete the proof of
Proposition 5.4 in the case j = 0.

Regarding the case j = 1, the proof is very similar. We can repeat (A.4—A.7) with NG, (h)
instead of NGy (h) and after redefining fi j as

v =G0+ — ) LA+ ) —hE]. (A.15)
Using that £’ is odd, introducing the function gj, (u) := (% —u)L [h(% — u)] and computing
G’ from (5.9), we obtain that in this case

1—-1/2N
A(N,h)y=N /mN G =W LG =»ldy+ 10— DL - 301

1/2N
= NG'(h) + g(5k) — ZN/ g du . (A.16)
0

Taking the derivative of g we obtain g'(u) = —C’[h(% —u)]— h(% — u)[,”[h(% —u)] so that

sup sup lg'(w)| < Cx +BCk. (A.17)
u€l0,1/2N] he[—B+K ,f—K]
Therefore,

1/2N
|g(ﬁ)—g(0)| +2N/0 |g(u) — g(0)|du

IA

1/2N
2(s) — 2Nf g du
0

IA

/ " 1
(Cx +8 K)N' (A.18)
It remains to consider B(N, h) for which we need to compute f&h, ie., forx € [1, N],
2
fua@ =L 50+ ) —hv]+ 5 G0+ — %)L [0+ 3) —hx]. (A19)

Thus, after defining C% := max{|L"”'(x)|, x € Rk} and by mimicking the former proof we
obtain | f{/,(x)| < (2C B+ B> Cy)/N? for x € [1, N]. This is sufficient to claim (from
(A.7)) that

1
|B(N.h)| < 2Ck B+ B*CY) n max{|Bx(u)|, u € [0, 1]}. (A.20)
We combine (A.16), (A.18) and (A.20) and it completes the proof of Proposition 5.4 in the
case j = 1. O
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