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Abstract
In the present paper, we investigate the collapsed phase of the interacting partially-directed
self-avoiding walk (IPDSAW) that was introduced in Zwanzig and Lauritzen (J Chem
Phys 48(8):3351, 1968) under a semi-continuous form and later in Binder et al. (J Phys
A 23(18):L975–L979, 1990) under the discrete form that we address here. We provide sharp
asymptotics of the partition function inside the collapsed phase, proving rigorously a conjec-
ture formulated in Guttmann (J Phys A 48(4):045209, 2015) and Owczarek et al. (Phys Rev
Lett 70:951–953, 1993). As a by-product of our result, we obtain that, inside the collapsed
phase, a typical IPDSAW trajectory is made of a unique macroscopic bead, consisting of a
concatenation of long vertical stretches of alternating signs, outside which only finitely many
monomers are lying.

Keywords Polymer collapse · Large deviations · Random walk representation · Local limit
theorem

Mathematics Subject Classification Primary 60K35 · Secondary 82B41

Notation

Let (aL)L≤1 and (bL)L≤1 be two sequences of positive numbers. We write

aL ∼
L→∞ bL if lim

L→∞ aL/bL = 1 .

We also write (const.) to denote generic positive constant whose value may change from
line to line.
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1 Introduction

Identifying the behavior of the partition function of a lattice polymer model is in general a
challenging question that sparked interest in both the physical and mathematical literature.
In a recent survey [10], some polymer models are reviewed that have in common that their
partition functions is of the form

QL ∼
L→∞ BμLμLσ

1 Lg , (1.1)

where B, μ, μ1, σ, g are real constants depending on the coupling parameters of the model.
Among these model, the Interacting Partially Directed Self-AvoidingWalk (referred to under
the acronym IPDSAW) which accounts for an homopolymer dipped in a poor (i.e., repulsive)
solvent is conjectured to satisfy (1.1) inside its collapsed phase. To be more specific, based
on numerics displayed in [10] and in [14] (with simulations up to size L = 6000), the values
of σ and g are conjectured to be 1/2 and −3/4. In an earlier paper [6,Theorem 2.1], analytic
expressions where displayed forμ andμ1 while σ was proven to be 1/2. In the present paper,
we give a full proof of (1.1) for the IPDSAW in its collapsed phase, in particular we prove
that g = −3/4 and give an analytic expression of B.

Model

Several mathematical models have been introduced so far in the literature to investigate
the collapse transition of a polymer in a repulsive solvant (we refer to [7,Section 6] or
[11] for a review on the topic). On the square lattice, a natural pick would be to model the
polymer configurations by the trajectories of a self-avoidingwalk.However the combinatorial
complexity of this walk makes such models very difficult to study. This is the reason why the
IPDSAW (that is partially directed) has been introduced, first under a semi-continuous form
in [18] and later on under a fully discrete form in [1]. This later version of the model is the
one we consider here.

The spatial configurations of the polymer aremodeled by the trajectories of a self-avoiding
random walk on Z

2 that only takes unitary steps upwards, downwards and to the right (see
Fig. 1). To take into account the monomer-solvent interactions, one considers that, when
dipped in a poor solvent, the monomers try to exclude the solvent and therefore attract one
another. For this reason, any non-consecutive vertices of the walk though adjacent on the
lattice are called self-touchings (see Fig. 1) and the interactions between monomers are taken
into account by assigning an energetic reward β ≥ 0 to the polymer for each self-touching.

It is convenient to represent the configurations of the model as families of oriented vertical
stretches separated by horizontal steps. To be more specific, for a polymer made of L ∈ N

monomers, the set of allowed path isΩL := ⋃L
N=1 LN ,L , whereLN ,L consists of all families

made of N vertical stretches that have a total length L − N , that is

LN ,L =
{
� := (�i )

N
i=1 ∈ Z

N : ∑N
n=1 |�n | + N = L

}
. (1.2)

With this representation, the modulus of a given stretch corresponds to the number of
monomers constituting this stretch (and the sign gives the direction upwards or downwards).
For convenience, we require every configuration to end with a horizontal step, and we note
that any two consecutive vertical stretches are separated by a step placed horizontally. The
latter explains why

∑N
n=1 |�n | must equal L − N in order for � = (�i )

N
i=1 to be associated

with a polymer made of L monomers (see Fig. 1).
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Fig. 1 Representation of an IPDSAW trajectory with length L = 48 and horizontal extension N = 17. Its
self-touchings are shown in red

As mentioned above, the attraction between monomers is taken into account in the
Hamiltonian associated with each path � ∈ ΩL , by rewarding energetically those pairs
of consecutive stretches with opposite directions, i.e.,

HL,β(�1, . . . , �N ) = β
∑N−1

n=1 (�n ∧̃ �n+1) , (1.3)

where

x ∧̃ y =
{
|x | ∧ |y| if xy < 0 ,

0 otherwise ,
(1.4)

and for x, y ∈ R, x ∧ y := min(x, y).
One can already note that large values of the Hamiltonian are assigned to trajectories

made of few but long vertical stretches with alternating signs. Such paths will be referred
to as collapsed configurations. With the Hamiltonian in hand we can define the polymer
measure as

PL,β(�) = eHL,β (�)

ZL,β

, � ∈ ΩL , (1.5)

where ZL,β is the partition function of the model, i.e.,

ZL,β =
L∑

N=1

∑

�∈LN ,L

eHL,β (�). (1.6)

2 Main Results

It was first proven in [2] with combinatorial tools that the IPDSAW undergoes a collapse
transition at some βc > 0, dividing [0,∞) into an extended phase E := [0, βc) and a
collapsed phase C := [βc,∞) (see also [13,Theorem 1.3] for a probabilistic proof). Note
that, when the monomer-monomer attraction is switched off (β = 0), a typical configuration
(sampled from PL,β ) has a horizontal extension O(L) since, roughly speaking, every step
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has a positive probability (bounded from below) to be horizontal. In the extended phase, the
interaction intensity β is not yet strong enough to bring this typical horizontal extension from
O(L) to o(L). Inside the collapsed phase, in turn, the interaction intensity is large enough to
change dramatically the geometric features of a typical trajectory, which roughly looks like
a compact ball with a horizontal extension o(L). Asymptotics of (ZL,β)L≥1 are displayed
and proven in [6,Theorem 2.1 (1) and (2)] for the extended phase and at criticality (β = βc).
Inside the collapsed phase, although the exponential terms of the partition function growth
rate were identified via upper and lower bounds (see [6,Theorem 2.1 (iii)]), a full proof of
such asymptotics was missing. We close this gap with Theorem 2.1 below, by identifying
the polynomial prefactor. This improvement relies on a sharp local limit theorem displayed
in Proposition 4.6 for some random walk in a large deviation regime (more precisely it is
constrained to be positive, cover a large area and end in 0).

Let us settle some notations that are required to state Theorem 2.1. For β > 0 we let Pβ

be the following discrete Laplace probability law on Z:

Pβ( · = k) = e−
β
2 |k|

cβ

, cβ :=
∑

k∈Z
e−

β
2 |k| = 1 + e−β/2

1 − e−β/2 . (2.1)

Let βc is the unique positive solution to the equation cβ
eβ = 1 (see [13,Theorem 1.3]); in

particular cβ
eβ < 1 for β > βc. Moreover, we denote by L(h) the logarithmic moment

generating function of Z a random variable of law Pβ , i.e.,

L(h) := logEβ [ehZ ] = log

(
cosh(β/2) − 1

cosh(β/2) − cosh(h)

)

, h ∈ (− β
2 ,

β
2

)
, (2.2)

which is smooth, strictly convex and even on (−β/2, β/2), and L′′ is bounded away from 0
on (−β/2, β/2) by some positive constant.

We now display some definitions required to study the asymptotics of the probability that
some random walk trajectory encloses an atypically large area (which were first introduced
in [8]), as well as the escape probability of a certain class of drifted random walks.
Asymptotics for trajectories enclosing an atypically large area.We let G : (−β, β) → R be
defined as

G(h) :=
∫ 1

0
L(h( 12 − s))ds, for h ∈ (−β, β). (2.3)

Recalling (2.2), a straightforward computation yields that G′′(h) > 0 for h ∈ (−β, β),
and G′ is a C1 diffeomorphism from (−β, β) toR. We let q ∈ R 
→ h̃q be its inverse function.
Considering X := (Xi )i∈N a random walk starting from the origin, whose increments (Xi −
Xi−1)i∈N are i.i.d. with law Pβ , we denote by AN (X) (or AN when there is no risk of
confusion) the algebraic area enclosed by X up to time N , i.e.,

AN (X) := X1 + · · · + XN . (2.4)

It is proven in [8] that, for q ∈ (0,∞) ∩ N

N2 , the exponential decay rate of the event {AN =
qN 2, XN = 0} is given by the Legendre transform of G (or “convex dual”, see [16,Sec. 12]),
that is ψ̃ defined by

ψ̃(q) := sup{q h − G(h), h ∈ (−β, β)} = q h̃q − G(̃hq), for q ∈ (0,∞), (2.5)

(notice that G is strictly convex, hence so is ψ̃), and in this large deviation regime, the fluctua-
tions of ( 1

N AN (X), XN ) around (qN , 0) are asymptotically Gaussian (see also [8,Section 4]
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andAppendix A.1 for more details). The determinant of the covariancematrix of this limiting
distribution is given by

ϑ(h) =
∫ 1

0
s2L′′[h(s − 1

2 )] ds
∫ 1

0
L′′[h(s − 1

2 )]ds −
[ ∫ 1

0
s L′′[h(s − 1

2 )]ds
]2

, (2.6)

which is positive by the Cauchy–Schwarz inequality.
Tilting and escape probability. For |h| < β/2 we let P̃h be the probability law on Z defined
by perturbing Pβ as

dP̃h

dPβ

(k) = ehk−L(h) k ∈ Z. (2.7)

For h ∈ (0, β/2), we consider a random walk X := (Xi )i∈N such that X0 = 0 and whose
increments (Xi − Xi−1)i∈N are i.i.d. with law P̃h , i.e. with a positive drift (with an abuse of
notation, P̃h will also denote the law of this randomwalk). We denote by κ(h) the probability
that X never returns to the lower half plane, that is

κ(h) := P̃h
(
Xi > 0, ∀i ∈ N) = e2h − 1

eh+β/2 − 1
, (2.8)

where the second identity is proven in Lemma 5.15.

Finally, we compute in Proposition 4.6 below an equivalent as N → ∞ to the probability
of the event {AN = qN 2, XN = 0, Xi > 0 ∀ 1 ≤ i ≤ N − 1}, which involves the constant
prefactor

Cβ,q := 1

2π ϑ(̃hq)
1
2

κ
( h̃q
2

)2
, (2.9)

for β, q > 0. With all those definitions, we may now state our main result.

Theorem 2.1 For any β > βc, one has

ZL,β ∼
L→∞

Kβ

L3/4 eβL+G̃(aβ )
√
L , (2.10)

with
G̃(x) := x log

cβ

eβ
− x ψ̃(x−2) , x > 0 , (2.11)

and
aβ := argmax

{
G̃(x) : x ∈]0,∞[} , (2.12)

and

Kβ :=
2
√
2π C

β,a−2
β

eψ̃ ′(a−2
β )

[
(1 + e−β)earccosh(e−β/2 cosh(β)) − eβ/2(1 − e−β)

]2
a2β
∣
∣G̃ ′′

(aβ)
∣
∣1/2

. (2.13)

Theorem 2.1 is proven in Sect. 4. The proof requires to decompose a trajectory into a
succession of beads that are sub-trajectoriesmade of non-zero vertical stretches of alternating
signs (see Sect. 3 for a rigorous definition). Inside the collapsed phase, an issue raised by
physicists was to understand whether a typical trajectory contains a unique macroscopic bead
or not. Thus, for every � ∈ ΩL we let N� be its horizontal extension (i.e., � ∈ LN�,L ) and
also |Imax(�)| be the length of its largest bead, i.e.,

|Imax(�)| := max
{∑v

i=u(1 + |�i |) : 1 ≤ u ≤ v ≤ N�, �i�i+1 < 0 ∀ u ≤ i ≤ v − 1
}
.

(2.14)
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With [4,TheoremC] it is known that a typical trajectory indeed contains a uniquemacroscopic
bead, and that at most (log L)4 monomers lay outside this large bead. We improve this
result with the following theorem, by showing that only finitely many monomers are to be
found outside the unique macroscopic bead. Recall from (1.5) that PL,β denotes the polymer
measure.

Theorem 2.2 For any β > βc,

lim
k→∞ lim inf

L→∞ PL,β

(|Imax(�)| ≥ L − k) = 1. (2.15)

Comments on the Results

Let us give some insight into (2.10–2.13). In Proposition 4.1, we provide sharp asymptotics
to the partition function of the single-bead version of the model, in which vertical stretches
are constrained to alternate signs and be non-zero. Since any trajectory of the full model may
be decomposed into a sequence of single-bead ones (see Sect. 3.1 below), we prove in Sect. 4
with a renewal argument that the same asymptotics hold for the full model, up to an explicit
constant factor.

Regarding the single-bead model, we display in Sect. 3.2 a probabilistic representation
of its partition function, which was initially introduced in [13]. Let X be a random walk
with increments distributed as Pβ (recall (2.1)). For a length L ∈ N and when fixing a
horizontal extension N ∈ N, the single-bead partition function matches the probability that
X satisfies the event {AN = L − N , XN+1 = 0, Xi > 0 ∀ 1 ≤ i ≤ N }, up to an explicit
factor 2cβ eβL(cβe−β)N (see (3.16)). This probability matches the partition function of a
1-dimensional SOS-model (Solid-On-Solid) with additional constraints: on the one hand the
trajectory must enclose a fixed area and end in 0, as in the SOS-models previously studied in
[8, 12]; on the other hand thewalk has to remain positive. Therefore, we prove Proposition 4.1
by:

– First observing that, in the Collapsed regime, the main contribution to the single-bead
partition function comes from trajectories with horizontal extension N = x

√
L , x ∈

[x1, x2]∩ N√
L
(see [4,Lemma 4.4]). For those trajectories, the latter event becomes {AN =

qN 2 + O(N ), XN+1 = 0, Xi > 0 ∀ 1 ≤ i ≤ N } with q = x−2 > 0, which is a large
deviation regime for the walk X .

– Thenproviding an exact equivalent for the probability of the latter event inProposition4.6,
which is the main feature of this paper. The case without the positivity constraint has
already been handled in [8] (see also [12] where the authors compute the exponential
decay rate in N , which is ψ̃(q)), and our result strongly improves previous estimates
such as [4,Prop. 2.4–2.5], by deriving sharply the effect of the positivity constraint on
this equivalent (whereas [4] only computes polynomial bounds).

Finally, Theorem 2.1 is obtained by optimizing on admissible ratios N√
L

= x ∈ [x1, x2] in the
partition function. In particular, notice that G̃(aβ) is the Legendre transform of the (strictly
convex) rate function x 
→ x ψ̃(x−2), evaluated at log(cβe−β).

Outline of the Paper

With Sect. 3 below, we introduce some mathematical tools of particular importance for the
rest of the paper. Thus, in Sect. 3.1 we define rigorously the set containing the single-bead
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trajectories. Such beads allow us to decompose any paths in ΩL into sub-trajectories that
are not interacting with each other. Under the polymer measure, the accumulated lengths
of those beads form a renewal process which is of key importance throughout the paper.
Section 3.2 is dedicated to the random walk representation of the model and provides a
probabilistic expression for many partition functions introduced in the paper. In Sect. 4 we
proveTheorem2.1 subject toProposition4.1whichgives sharp asymptotics for those partition
functions associatedwith single bead trajectories. Proposition 4.1 is proven afterwards subject
to Proposition 4.6. The proof of Proposition 4.6 is divided into 4 steps, displayed in Sect. 5
after we introduce a tilted law for the random walk X inspired from [8], for which the event
{AN (X) = q N 2, XN = 0} becomes typical. Note that Steps 3 and 4 from Sect. 5 require
the local limit theorem which is displayed in Appendix A.1, and Proposition 5.4 is proven
in Appendix A.2. Finally, Theorem 2.2 is proven in Sect. 6 by using mostly the asymptotics
provided by Theorem 2.1.

3 Preparations

3.1 One Bead Trajectories and Renewal Structure

We call bead a maximal succession of non-zero vertical stretches with alternate signs; more
precisely a bead terminates whenever the trajectory makes a zero-length vertical stretch, or
two non-zero stretches of the same sign. Any trajectory � ∈ ΩL can be decomposed into a
succession of beads, and this decomposition is unique.

Let L ∈ N and denote byΩ ◦
L the subset ofΩL gathering single-bead trajectories of length

L , i.e. trajectories made of non-zero vertical stretches that alternate orientations. Thus, we
set Ω ◦

L = ∪L/2
N=1L

◦
N ,L with

L ◦
N ,L :=

{
(�i )

N
i=1 ∈ Z

N :
N∑

i=1

|�i | = L − N , �i�i+1 < 0 ∀ 1 ≤ i < N
}
. (3.1)

We also denote by Z ◦
L,β the partition function restricted to trajectories in Ω ◦

L , i.e.,

Z ◦
L,β :=

L/2∑

N=1

∑

�∈L ◦
N ,L

eβH(�). (3.2)

The bead decomposition and single-bead model were already introduced in [4]; however
additional care is required to derive sharp asymptotics of ZL,β : after a zero-length vertical
stretch, the sign of the first stretch of the next bead is unrestricted, whereas it is otherwise
constrained by the sign of the last stretch of the previous bead. To bypass this combinatorial
inconvenience, we tweak the decomposition to integrate the zero-length stretches at the
beginning of beads (see Fig. 2), giving rise to a renewal structure: the realization of a single-
bead trajectory has no influence over the value of the partition function associated with the
next bead. We define Ω̂ ◦ the set of extended beads as

Ω̂ ◦ :=
⋃

L≥2

Ω̂ ◦
L , (3.3)
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Fig. 2 Decomposition of an IPDSAW trajectory into “extended” beads, see (3.3-3.5). A new bead begins
whenever two non-zero length stretches have the same sign, or when there is a succession of zero-length
vertical stretches

where Ω̂ ◦
L is the subset of ΩL gathering trajectories which may or may not start with a

sequence of zero-length stretches and form subsequently a unique bead, i.e.,

Ω̂ ◦
L :=

L−2⋃

k=0

Ω̂
◦, k
L , (3.4)

with
Ω̂

◦, 0
L :=

{
� ∈ Ω ◦

L : �1 > 0
}

,

Ω̂
◦, k
L :=

{
� ∈ ΩL : N� > k, �1 = · · · = �k = 0, (�i+k)

N�−k
i=1 ∈ Ω ◦

L−k

}
, k ∈ {1, . . . , L − 2} .

(3.5)

We recall (3.2) and (3.4) and the partition function restricted to trajectories in Ω̂ ◦
L becomes:

Ẑ ◦
L,β :=

L−2∑

k=0

[
1

2
1{k=0} Z ◦

L,β + 1{k∈N} Z ◦
L−k,β

]

. (3.6)

Note that, in the definition of Ω̂ ◦, 0
L in (3.5) the sign of �1 is prescribed because if an extended

bead does not start with a zero-length stretch, then the sign of its first stretch must be the
same as that of the last stretch of the preceding bead; hence the factor 1

2 in (3.6) (see Fig. 2,
where the 2nd, 4th and 5th beads start with non-zero stretches with constrained signs, and
the 3rd bead starts with two zero-length stretches). Of course this latter restriction does not
apply to the very first extended bead of a trajectory and this is why we define

Z̄ ◦
L,β :=

L−2∑

k=0

Z ◦
L−k,β . (3.7)

For convenience, we also define Ω c
L the subset of ΩL containing trajectories ending with

a non-zero stretch, i.e.,
Ω c

L := {� ∈ ΩL : �N�
�= 0}, (3.8)

(see Fig. 2 for an example). At this stage we can decompose a given trajectory � ∈ Ω c
L into

extended beads by cutting the trajectory at times (τ j )
n(�)
j=0 defined as τ0 = 0 and for j ∈ N

such that τ j−1 < N�

τ j := max
{
s > τ j−1 : (�i )

s
i=1+τ j−1

∈ Ω̂ ◦ or (−�i )
s
i=1+τ j−1

∈ Ω̂ ◦}. (3.9)
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Then n(�) is the number of beads composing � and satisfies τn(�) = N�, thus

� = �n(�)
j=1 B j with B j := (�τ j−1+1, . . . , �τ j ) , (3.10)

where � denotes the concatenation. We also set X0 = 0 and for j ∈ {1, . . . , n�}, we denote
byX j −X j−1 the number of steps (or monomers) that the j-th bead is made of (also referred
to as total length of the bead), that is,

X j − X j−1 = τ j − τ j−1 + |�τ j−1+1| + · · · + |�τ j |, j ∈ {1, . . . , n�}. (3.11)

The set X := {0,X1, . . . ,Xn�
} contains the accumulated lengths of the beads forming �, in

particular Xn�
= L .

Remark 3.1 Note that a trajectory � ∈ ΩL \Ω c
L may also be decomposed into extended beads

as in (3.9–3.11). The only difference is that the very last bead is followed by a sequence of
zero-length vertical stretches, i.e., Xn�

= L − k for some k ∈ {1, . . . , L} and the last k
vertical stretches in � have zero-length.

By using this bead-decomposition we can rewrite Z c
L,β the partition function restricted to

Ω c
L as

Z c
L,β =

L/2∑

r=1

∑

t1+···+tr=L

Z c
L,β

(
n(�) = r ,Xi − Xi−1 = ti ,∀1 ≤ i ≤ r

)

=
L/2∑

r=1

∑

t1+···+tr=L

Z̄ ◦
t1,β

r∏

j=2

Ẑ ◦
t j ,β , (3.12)

where Z c
L,β(D) denotes the partition function restricted to trajectories � ∈ Ω c

L having prop-
erty D.

3.2 Probabilistic Representation

The aim of this section is to give a probabilistic expression of the partition function Z ◦
L,β and

to use it subsequently to provide closed expression of the generating functions associated
with (Ẑ ◦

L,β)L≥2 and with (Z̄ ◦
L,β)L≥2.

We recall the definition of Pβ and cβ from (2.1), and for x ∈ Z we denote by Pβ,x the law
of a random walk X := (Xi )i≥0 starting from x (i.e., X0 = x) and such that (Xi+1 − Xi )i≥0

is an i.i.d. sequence of random variables with law Pβ . In the case x = 0, we omit the x-
dependence of Pβ,x when there is no risk of confusion. We also recall from (2.4) that AN

defines the algebraic area enclosed in-between a random walk trajectory and the x-axis after
N steps.

Recall (3.1) and (3.2), and let us now briefly remind the transformation that allows us to
give a probabilistic representation of Z ◦

L,β (we refer to [5] for a review on the recent progress
made on IPDSAW by using probabilistic tools). First, note that for x, y ∈ Z one can write
x ∧̃ y = 1

2 (|x | + |y| − |x + y|). By using the latter equality to compute the Hamiltonian
(recall (1.3)), we may rewrite (3.2) as
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Z ◦
L,β =

L/2∑

N=1

∑

�∈L ◦
N ,L

�0=�N+1=0

exp
(
β

N∑

n=1

|�n | − β
2

N∑

n=0

|�n + �n+1|
)

= cβ eβL
L/2∑

N=1

(
cβ
eβ

)N ∑

�∈L ◦
N ,L

�0=�N+1=0

N∏

n=0

exp
(
−β

2 |�n + �n+1|
)

cβ

. (3.13)

Henceforth, for convenience, we assume that any � ∈ L ◦
N ,L satisfies �0 = �N+1 = 0. At

this stage, we denote by B+
N the set of those N -step integer-valued random walk trajectories,

starting and ending at 0 and remaining positive in-between, i.e.,

B+
N := {

(xi )
N
i=0 ∈ Z

N+1 : x0 = xN = 0, xi > 0 ∀ 0 < i < N
}
. (3.14)

It remains to notice that the map

TN : {� ∈ L ◦
N ,L : �1 > 0} → {

(xi )
N+1
i=0 ∈ B+

N+1 : AN (x) = L − N
}

(�i )
N+1
i=0 
→ (xi )

N+1
i=0 := ((−1)i−1 �i )

N+1
i=0

, (3.15)

is a one-to-one correspondence, and that for � ∈ L ◦
N ,L the increments of TN (�) are inmodulus

equal to (|�i−1 + �i |)N+1
i=1 . Therefore, set Γβ := cβ/eβ and (3.13) becomes

Z ◦
L,β e−βL = 2 cβ

L/2∑

N=1

(Γβ)N Pβ

(
X ∈ B+

N+1, AN (X) = L − N
)
, (3.16)

where the factor 2 in the r.h.s. in (3.16) is required to take into account those � ∈ L ◦
N ,L

satisfying �1 < 0.
With the next Lemma, we provide an explicit expression of the generating functions∑
L≥2 Ẑ

◦
L,β zL and

∑
L≥2 Z̄

◦
L,β zL at z = e−β . This is needed to determine Kβ in Theorem

2.1.

Lemma 3.2 For β > 0,

δ1(β) :=
∑

L≥2

Z̄ ◦
L,β e−βL = 2 eβ

1 − e−β
rβ ,

δ2(β) :=
∑

L≥2

Ẑ ◦
L,β e−βL = eβc2β rβ , (3.17)

with rβ := Eβ

[
1{X1>0} 1{Xρ=0} (Γβ)ρ

]
where ρ := inf{i ≥ 1 : Xi ≤ 0}. Moreover,

rβ =
{+∞ if β < βc ,

1 − e−β − e−
β
2 +arccosh

(
e−β/2 cosh(β)

)

if β ≥ βc .
(3.18)

Proof We recall (3.16) and we start by computing
∑

L≥2

Z ◦
L,β e−βL = 2 cβ

∑

N≥1

(Γβ)N
∑

L≥2N

Pβ

(
X ∈ B+

N+1, AN (X) = L − N
)

= 2 cβ

∑

N≥1

(Γβ)N Pβ

(
X ∈ B+

N+1

)

= 2 eβ rβ . (3.19)

Then, we use (3.6) to write
123
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∑

L≥2

Ẑ ◦
L,β e−βL :=

∑

L≥2

L−2∑

k=0

e−βL
[
1

2
1{k=0} Z ◦

L,β + 1{k∈N} Z ◦
L−k,β

]

= 1

2

∑

L≥2

e−βL Z ◦
L,β +

∞∑

k=1

e−βk
∞∑

t=2

e−βt Z ◦
t,β

=
(1

2
+ e−β

1 − e−β

)∑

L≥2

e−βL Z ◦
L,β , (3.20)

and it remains to combine (3.19) and (3.20) to obtain the second equality in (3.17). Using
(3.7), the very same computation allows us to obtain the first equality in (3.17).

To obtain a formula for rβ , let us now compute Eβ [(Γβ)ρ]: indeed, the fact that the
increments of X follow a discrete Laplace law entails that (ρ, X1, . . . , Xρ−1) and Xρ are
independent, and moreover that −Xρ follows a geometric law on N ∪ {0} with parameter
1 − e−β/2. Thereby,

Eβ

[
(Γβ)ρ

] = Eβ

[
1{X1>0}(Γβ)ρ

]+ Γβ Pβ(X1 ≤ 0)

= rβ
Pβ(−Xρ = 0)

+ cβ

eβ

(
1

cβ

+ 1

2

(
1 − 1

cβ

))

= rβ + e−β

1 − e−β/2 . (3.21)

It is a straightforward application of [3,Eq. (4.5)] that there exists c > 0 depending on β

only such that

Pβ(ρ = t) ∼ c

t3/2
as t → ∞ . (3.22)

Recall that β 
→ Γβ is decreasing on (0,∞); in particular when β < βc, one has Γβ > 1, so
(3.21) and (3.22) imply rβ = +∞.

Recall the definition and expression of L from (2.2). When β ≥ βc, notice that
(e−ζ Xn+log(Γβ)n)n≥0 is a martingale under Pβ,0 if and only if L(−ζ ) = − log(Γβ). Since
Γβ ≤ 1 and L is decreasing, not bounded on (−β/2, 0], there is a unique ζβ ∈ [0, β/2)
satisfying this equality, given by

ζβ = arccosh
(
(1 − Γβ) cosh(β/2) + Γβ

) = arccosh
(
e−β/2 cosh(β)

)
. (3.23)

Noticing that this martingale stopped at time ρ is uniformly integrable and using Doob’s
Optional Stopping Theorem, we finally obtain

Eβ

[
(Γβ)ρ

] = Eβ

[
e−ζβ Xρ

]−1 = 1 − eζβ−β/2

1 − e−β/2 , (3.24)

(recall that −Xρ follows a geometric law on N ∪ {0} with parameter 1 − e−β/2), which
concludes the proof by recollecting (3.21) and (3.23). ��
To end this section we state and prove the following corollary which is needed in the proof
of Theorem 2.1 (see Sect. 4) below.
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Corollary 3.3 For any β > βc, we have δ2(β) < 1.

Proof We observe that β → δ2(β) is decreasing simply because for every L ≥ 2 and every
� ∈ ΩL the quantity β → HL,β(�) − βL is decreasing (recall (1.3), and notice that any
trajectory � ∈ ΩL realizes less than L self-touchings). Therefore, it only remains to prove
that δ2(βc) = 1, and the corollary follows. Recall that Γβc = 1, which ensures that eβc/2 is
a solution to X3 − X2 − X − 1 = 0 and that ζβc = 0 in (3.23). This implies both

rβc = 1 − e−βc − e−βc/2 = e−3βc/2 ,

and

δ2(βc) = e−βc/2
(
1 + e−βc

1 − e−βc

)

= 1 ,

which concludes the proof. ��

4 Proof of Theorem 2.1

In this section we provide a sharp estimate for the partition function of single-bead trajecto-
ries in Proposition 4.1, with which we prove Theorem 2.1. The proof of Proposition 4.1 is
displayed afterwards subject to Proposition 4.6 and Lemma 4.5. Recall the definition of G̃
from (2.11), and let us point out that it was proven in [4,(1.27)] that G̃ is smooth, concave,
negative on (0,∞), and it admits a unique maximizer aβ ∈ (0,∞).

Proposition 4.1 For β > βc, there exists K ◦
β > 0 such that

Z ◦
L,β ∼

L→∞
K ◦

β

L3/4 e
βL+G̃(aβ )

√
L . (4.1)

Corollary 4.2 For β > βc, there exist K̂β > 0 and K̄β > 0 such that

Ẑ ◦
L,β ∼

L→∞
K̂β

L3/4 e
βL+G̃(aβ )

√
L and Z̄ ◦

L,β ∼
L→∞

K̄β

L3/4 e
βL+G̃(aβ )

√
L . (4.2)

Explicit formulae for K̂β, K̄β and K ◦
β are given below in (4.4) and (4.37). Let us point out

that (4.1) is a substantial improvement of [4,Prop. 4.2], where the polynomial factors were
1
Lκ with κ > 1 in the lower bound, and 1√

L
in the upper bound. Moreover Corollary 4.2 is a

straightforward consequence of Proposition 4.1. Indeed, let us define for convenience

h(n) := 1

n3/4
eG̃(aβ )

√
n, n ∈ N . (4.3)

Recollecting (3.6), we write

e−βL

h(L)
Ẑ ◦
L,β = 1

2

e−βL

h(L)
Z ◦
L,β +

L−2∑

k=1

e−βk e
−β(L−k)

h(L)
Z ◦
L−k,β ,

and similarly for (3.7). Notice that h(L) ∼ h(L − k) as L → ∞ for any k ∈ N, so (4.1) and
dominated convergence imply that (4.2) holds true with

K̂β = K ◦
β

1 + e−β

2(1 − e−β)
and K̄β = K ◦

β

1

1 − e−β
. (4.4)
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Proof of Theorem 2.1 subject to Proposition 4.1 Recall the definitions of δ1(β) and δ2(β) in
(3.17), and define two probability laws q1 and q2 on N by

q1(t) := δ1(β)−1 Z̄ ◦
t,β e−βt t ≥ 2 , (4.5)

q2(t) := δ2(β)−1 Ẑ ◦
t,β e−βt t ≥ 2 . (4.6)

For r ∈ N, we denote by qr ∗
2 the convolution product of r times q2 and by q1 ∗ qr∗2 the

convolution product between q1 and qr ∗
2 . This allows us to rewrite (3.12) under the form

Z̃ c
L,β := e−βL Z c

L,β = δ1(β)

δ2(β)

∑

r≥1

δ2(β)r
[
q1 ∗ q(r−1)∗

2

]
(L) . (4.7)

Recalling (4.3), Corollary 4.2 implies that

q1(n) ∼
n→∞ uβ h(n), with uβ := K̄β

δ1(β)
,

q2(n) ∼
n→∞ vβ h(n), with vβ := K̂β

δ2(β)
. (4.8)

At this stage, Theorem 2.1 is a straightforward consequence of Claims 4.3 and 4.4 below.
Those claims are proven in [9,Corollary 4.13 and Theorem 4.14] in the case where q1 ≡ q2.
However, (4.8) guarantees that the proof in [9] can easily be adapted to our case since q1 and
q2 enjoy the same asymptotic behavior (up to a constant).

Claim 4.3 For β > 0 and r ∈ N ∪ {0} it holds that q1 ∗ qr∗2 (n) ∼n→∞ (uβ + r vβ) h(n).

Claim 4.4 For β > 0 and ε > 0 there exists n0(ε) ∈ N and C(ε) > 0 such that

q1 ∗ qr∗2 (n) ≤ C(ε) (1 + ε)r h(n), n ≥ n0(ε), r ∈ N ∪ {0} . (4.9)

It remains to use the dominated convergence Theorem to conclude from Claims 4.3 and 4.4
that for δ < 1

lim
n→∞

1

h(n)

∑

r≥1

δr
[
q1 ∗ q(r−1)∗

2

]
(n) = uβ

∑

r≥1

δr + δ vβ

∑

r≥1

r δr = uβ δ

1 − δ
+ vβ δ2

(1 − δ)2
.

(4.10)
Combining (4.7) with (4.10) at δ = δ2(β) (recall that δ2(β) < 1 by Corollary 3.3) we obtain
that

lim
L→∞

1

h(L)
Z̃ c
L,β = K̄β

1 − δ2(β)
+ K̂β δ1(β)

(1 − δ2(β))2
. (4.11)

To complete the proof of Theorem 2.1, it remains to take into account trajectories that
end with some zero-length stretches. To that aim, we recall (3.8) and we partition ΩL into
subsets whose trajectories are ending with a prescribed number of zero-length stretches, i.e.,

ΩL = ∪L
k=0

{
� ∈ ΩL : N� ≥ k, (�i )

N�−k
i=1 ∈ Ω c

L−k, �N�−k+1 = �N�−k+2 = · · · = �N�
= 0

}
.

(4.12)

By using this decomposition, we obtain that

Z̃ L,β := ZL,β e−βL =
L∑

k=0

e−βk Z̃ c
L−k,β , (4.13)

123



41 Page 14 of 36 A. Legrand, N. Pétrélis

and then, using (4.11) and dominated convergence we conclude that

Kβ := lim
L→∞

1

h(L)
Z̃ L,β = 1

1 − e−β

[ K̄β

1 − δ2(β)
+ K̂β δ1(β)

(1 − δ2(β))2

]
, (4.14)

which completes the proof of Theorem 2.1, by combining (4.14) with (4.4) and (3.17), and
by writing

Kβ = K ◦
β e−β

[
(1 + e−β) earccosh(e

−β/2 cosh(β)) − eβ/2(1 − e−β)
]−2

, (4.15)

where K ◦
β is computed below in (4.37). ��

Proof of Proposition 4.1 Let us now prove Proposition 4.1 subject to Lemma 4.5 and Propo-
sition 4.6 below. Recollecting (3.16), Lemma 4.5 states that the main contribution to the
single-bead partition function comes from terms of order N ≈ √

L in the sum, and Propo-
sition 4.1 provides a sharp estimate of those. The proof of Proposition 4.6 is postponed to
Sect. 5, whereas Lemma 4.5 was already stated and proven in [4,Lemma 4.4] so we do not
repeat the proof in the present paper.

Recall that N� is the horizontal extension of a trajectory � ∈ Ω ◦
L , and Z ◦

L,β(D) denotes
the partition function restricted to trajectories � ∈ Ω ◦

L having property D.

Lemma 4.5 [4,Lemma 4.4] Let β > βc, there exists (a1, a2) ∈ (0,∞)2 such that

lim
L→∞

Z ◦
L,β(N� ∈ [a1, a2]

√
L)

Z ◦
L,β

= 1 . (4.16)

For β > 0 and q > 0 recall the definitions of ψ̃(q) and Cβ,q from (2.5) and (2.9). For
conciseness, let us also define

Vn,k := {X : Xn = 0, An = k, Xi > 0, 0 < i < n}, (n, k) ∈ (N0)
2. (4.17)

Proposition 4.6 Let [q1, q2] ⊂ (0,∞) and N ∈ N. We have that for N ∈ N such that
qN 2 ∈ N,

Pβ(VN , qN2) = Cβ,q

N 2 e−N ψ̃(q)(1 + o(1)) , (4.18)

uniformly in q ∈ [q1, q2].
Remark 4.7 For the proof of Proposition 4.6 (see Sect. 5), we took inspiration from [15]
where a slightly different problem is considered. To be more specific, the authors consider a
random walk (Yi )i≥0 with a negative drift and a light tail such that the moment generating
function ϕ(t) := E(et Y1) satisfies that there exists a λ > 0 such that ϕ(λ) = 1, ϕ

′
(λ) < ∞

and ϕ
′′
(λ) < ∞. For such a walk, they provide the assymptotics of the joint law of τ :=

inf{i ≥ 1 : Yi ≤ 0} and of Aτ−1 as the latter becomes large.When applied in our framework,
[15,Theorem 1 and 2] prove that for p > 0 and q > p/2 there exist C1,C2 > 0 such that

Pβ(XN ≤ pN , AN = qN 2, Xi > p i, 0 < i < N ) ∼
N→∞

C1

N 2 e
−C2N .

The case p = 0, which is the object of Proposition 4.6 is not covered by [15] though, which
is why we provide a complete proof in Sect. 5.
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We start the proof of Proposition 4.1 by recalling (3.16) and the equality cβ
Γβ

= eβ , which
allow us to write for L ∈ N,

Z ◦
L,β = 2 cβ eβL Z̃ ◦

L,β := 2 eβ(1+L)

1+L/2∑

N=2

(Γβ)N Pβ(VN ,L−N+1) . (4.19)

Lemma 4.5 guarantees us that it suffices to consider

QL,β : =
a2

√
L∑

N=a1
√
L

(Γβ)N Pβ(VN ,L−N+1) (4.20)

=
∑

x∈[a1,a2]∩ N√
L

(Γβ)x
√
L Pβ

[
Vx

√
L, qL (x)(x

√
L)2

]
,

with qL(x) := L−x
√
L+1

x2L
. We note that x ∈ [a1, a2] yields that for L large enough, qL(x) ∈

[ 1
2a22

, 2
a21

] so that we can apply Proposition 4.6 for every x ∈ [a1, a2] ∩ N√
L
in the r.h.s. of

(4.20) and obtain

QL,β ∼
L→∞

∑

x∈[a1,a2]∩ N√
L

Cβ,qL (x)

x2 L
ex

√
L [logΓβ−ψ̃(qL (x))]. (4.21)

By definition (see (2.5)) ψ̃ is C2 on (0,∞) and therefore, uniformly in x ∈ [a1, a2] we get
ψ̃(qL(x)) = ψ̃(x−2) − ψ̃ ′(x−2) 1

x
√
L

+ O( 1
L ) , (4.22)

such that (4.21) becomes

QL,β ∼
L→∞

1

L

∑

x∈[a1,a2]∩ N√
L

Cβ,qL (x)eψ̃ ′(x−2)

x2
e
√
L G̃(x), (4.23)

with x ∈ (0,∞) 
→ G̃(x) := x logΓβ − x ψ̃(x−2) a function already investigated in
[4,(1.27)]: which is C2, negative, has negative second derivative (and therefore is strictly
concave on (0,∞)), and reaches its unique maximum at some aβ ∈ (a1, a2).

At this stage we pick R > 0 and we set TR,L := [ �aβ

√
L�√

L
− R

L1/4 ,
�aβ

√
L�√

L
+ R

L1/4

] ∩ N√
L
,

and

Q̃R,+
L,β :=

∑

x∈TR,L

Cβ,qL (x)eψ̃ ′(x−2)

x2
e
√
L G̃(x) ,

Q̃R,−
L,β :=

∑

x∈[a1,a2]∩ N√
L
\TR,L

Cβ,qL (x)eψ̃ ′(x−2)

x2
e
√
L G̃(x) . (4.24)

We recall (2.9) and we note that for β > 0, the function q ∈ (0,∞) 
→ Cβ,q is continuous
since x ∈ (0, β/2) 
→ κ(x) is continuous (see Lemma 5.15) as well as q 
→ h̃q (see (5.6)
and (5.7)). Moreover qL(x) converges to 1

a2β
uniformly in x ∈ TR,L and therefore

lim
L→∞Cβ,qL (x) = C

β,a−2
β

uniformly in x ∈ TR,L , (4.25)
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so that we can rewrite

Q̃R,+
L,β ∼

L→∞

C
β,a−2

β
eψ̃ ′(a−2

β )

a2β

R L1/4
∑

n=−R L1/4

e
√
L G̃
( �aβ

√
L�√

L
+ n√

L

)

, (4.26)

where we have changed the summation indices for computational convenience. Notice that G̃
is C2 on [a1, a2] and �aβ

√
L�/√L converges to aβ , which is the maximum of G̃. Therefore,

we may write the following expansion of G̃,

G̃
( �aβ

√
L�√

L
+ n√

L

)
= G̃(aβ) + 1

2
G̃ ′′

(aβ)
n2

L
+ O

( n
L

)+ o
( n2
L

)
. (4.27)

For ε > 0, we deduce an upper bound on the last factor from (4.26),

R L1/4
∑

n=−R L1/4

e
√
L G̃
( �aβ

√
L�√

L
+ n√

L

)

≤ eεR eG̃(aβ )
√
L

R L1/4
∑

n=−R L1/4

e
1
2 G̃

′′(aβ )( n
L1/4

)2
, (4.28)

for L sufficiently large; and a Riemann sum approximation yields (recall that G̃′′(aβ) is
negative)

R L1/4
∑

n=−R L1/4

e
1
2 G̃

′′(aβ )( n
L1/4

)2 ∼
L→∞ L

1
4

∫ R

−R
e G̃′′(aβ ) x2

2 dx . (4.29)

Similarly to (4.28), we may write a lower bound on the last factor from (4.26) by changing
the sign of ε. Combining both bounds and letting ε go to 0 eventually gives

QR,+
L,β ∼

L→∞

C
β, a−2

β
eψ̃ ′(a−2

β )

a2β
L

1
4 eG̃(aβ )

√
L
∫ R

−R
e G̃′′(aβ ) x2

2 dx . (4.30)

Let us now consider QR,−
L,β . To that aim, we bound it from above as

Q̃R,−
L,β ≤ Mβ,L

∑

x∈[a1,a2]∩ N√
L
\TR,L

e
√
L G̃(x) , (4.31)

with

Mβ,L := max
x∈[a1,a2]

Cβ,qL (x)e
ψ̃ ′( 1

x2
)

x2
. (4.32)

The continuity on (0,∞) of both q 
→ Cβ,q and ψ̃ ′ and the fact that, for L large enough,
qL(x) ∈ [1/(2a22), 2/a21 ] for x ∈ [a1, a2], guarantees us that there exists a M > 0 such that
Mβ,L ≤ M for every L ≥ 1

Recalling that G̃ is C2, strictly concave and reaches its maximum at aβ there exists c > 0
such that G̃(x) ≤ G̃(aβ) − c (x − aβ)2 for x ∈ [a1, a2] and therefore the sum in the r.h.s. in
(4.31) can be bounded above as

∑

x∈[a1,a2]∩ N√
L
\TR,L

e
√
L G̃(x) ≤ 2L1/4eG̃(aβ )

√
L 1

L1/4

∞∑

n=R L1/4

e
−c ( n

L1/4
)2

. (4.33)
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The function x 
→ e−cx2 being non increasing on [0,∞), a standard comparison between
sum and integral yields that for L large enough and every R ≥ 2,

1

L1/4

∞∑

n=R L1/4

e
−c ( n

L1/4
)2 ≤

∫ ∞

R−1
e−c x2dx . (4.34)

It remains to use (4.31–4.34) to conclude that for L large enough and R ≥ 2,

Q̃R,−
L,β ≤ 2M L1/4eG̃(aβ )

√
L
∫ ∞

R−1
e−c x2dx . (4.35)

We recall that
∫
R
eG̃

′′(aβ ) x
2
2 dx =

√
−2π/G̃′′(aβ). Then, we combine (4.23) with (4.24),

(4.30) and (4.35) to claim that

QL,β ∼
L→∞

√
2π C

β,a−2
β

eψ̃ ′(a−2
β )

a2β
∣
∣G̃′′(aβ)

∣
∣1/2

1

L3/4 eG̃(aβ )
√
L , (4.36)

and it suffices to recall (4.19) to complete the proof of Proposition 4.1 with

K ◦
β = 2 eβ

√
2π C

β,a−2
β

eψ̃ ′(a−2
β )

a2β
∣
∣G̃′′(aβ)

∣
∣1/2

. (4.37)

��

5 Proof of Proposition 4.6

Proposition 4.6 is a substantial improvement of [4,Prop. 2.5], since this latter proposition
only allowed us to bound from below the quantity P(Vn,qn2) with a polynomial factor 1/nγ

(γ > 2) instead of 1/n2 in the present Lemma. Let us first recall some results on the large
deviation principle satisfied by the sequence of random vectors ( 1n An−1, Xn)n≥1, which were
notably stated in [8,Section 4] in order to study SOS-models. We then provide an outline of
the proof of Proposition 4.6, which is divided into 4 steps, corresponding to Sects. 5.1, 5.2,
5.3 and 5.4 respectively.

Change of Measure

Let X := (Xi )i∈N be a random walk with law Pβ,0, i.e. starting from the origin and whose
increments are i.i.d. with law Pβ (recall (2.1)). For |h| < β/2, recall the definitions of L(h)

and P̃h in (2.2), and (2.7). Recall also the definition of AN (·) in (2.4).
For a trajectory x = (xi )ni=0 ∈ Z

n+1, x0 = 0, define Λn(x) := ( 1
n An−1(x), xn

)
. Large

deviations estimates for the random vector Λn(X) are displayed in [8]. Typically, one is
interested in the probability of events as

{ 1nΛn(X) = (q, p)} with (q, p) ∈ R
∗ × R ,

(where R∗ := R \ {0}), which requires to introduce tilted probability laws of the form

dPn,h

dPβ,0
(x) := eh·Λn(x)−LΛn (h) with LΛn (h) := logEβ,0[eh·Λn(X)]. (5.1)
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for x = (xi )ni=0 ∈ Z
n+1, x0 = 0, where h := (h0, h1) ∈ Dβ,n with

Dβ,n := {
(h0, h1) ∈ R

2 ; |h1| < β/2, |(1 − 1
n )h0 + h1| < β/2

}
.

For (q, p) ∈ R
∗ × R, the fact that ∇[ 1nLΛn ] is a C1 diffeomorphism from Dβ,n to R

2 (see
[4,Lemma 5.4]), allows us to choose h := hn(q, p) in (5.1) with hn(q, p) the unique solution
(in h) of the equation

En,h

[1

n
Λn(X)

]
= ∇

[1

n
LΛn

]
(h) = (q, p). (5.2)

UnderPn,hn(q,p) the event { 1nΛn(X) = (q, p)} becomes typical and can be sharply estimated.

In the present context though we only consider events where the random walk returns to
the origin after n steps, i.e., { 1nΛn(X) = (q, 0)} with p = 0. Moreover, for straightforward
symmetry reasons (stated e.g. in [4,Remark 5.5]) we have

hn(q, 0) = (
hqn ,−hqn ( 12 − 1

2n )
)
, q ∈ R

where hqn is the unique solution in h of the equation G′
n(h) = q , with

Gn(h) := 1

n
LΛn

[
h,− h

2 (1 − 1
n )
]

for h ∈ (− n β
n−1 ,

n β
n−1

)

= 1
n

n∑

i=1

L
[ h
2 (1 − 2i−1

n )
]
. (5.3)

It is claimed in Lemma 5.2 below that h 
→ G′
n(h) is a C1 diffeomorphism from (− n β

n−1 ,
n β
n−1

)

to R which justifies the existence and uniqueness of hqn . As a consequence, instead of those
tilted probability laws in (5.1), we shall rather use the probability laws Pn,h that depend on
the sole parameter h ∈ (− n β

n−1 ,
n β
n−1 ), i.e. for x = (xi )ni=0 ∈ Z

n+1, x0 = 0,
dPn,h

dPβ,0
(x) = eψn,h (An−1(x),xn) , with ψn,h(a, s) := h

a

n
− h

2

(
1− 1

n

)
s − n Gn(h) , s, a ∈ Z .

(5.4)
Let us point out that, underPn,h , the increments (Xi−Xi−1)

n
i=1 are independent and Xi−Xi−1

follows the law P̃ with parameter h
2 (1 − 2i−1

n

)
(recall (2.7)).

It remains to define the continuous counterpart of LΛn .

Dβ :=
{
(h0, h1) ∈ R

2 ; |h1| < β/2, |h0 + h1| < β/2
}
, (5.5)

and for every h = (h0, h1) ∈ Dβ ,

LΛ(h) :=
∫ 1

0
L(h0x + h1)dx . (5.6)

As stated in [8] and [4,Lemma 5.3], ∇LΛ(h) which can be written as

∇LΛ(h) = (∂h0LΛ, ∂h1LΛ)(h)

=
( ∫ 1

0
xL′(xh0 + h1)dx,

∫ 1

0
L′(xh0 + h1)dx

)
,

(5.7)

is a C1 diffeomorphism from Dβ to R
2. Thus, for (q, p) ∈ R

2 we let h̃(q, p) be the unique
solution in h ∈ Dβ of the equation ∇LΛ(h) = (q, p). As mentioned above for the discrete
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case we only need the case p = 0, for which the fact that L′ is an odd increasing function
combined with (5.7) ensures us that

h̃(q, 0) =
(
h̃q ,− h̃q

2

)
, q ∈ R , (5.8)

where h̃q is the unique solution in h of the equation G′(h) = q , with

G(h) := LΛ

(
h,− h

2

)
for h ∈ (−β, β)

=
∫ 1

0
L(h( 12 − x))dx . (5.9)

With Lemma 5.3 below, we claim that h 
→ G′(h) is a C1 diffeomorphism from (−β, β) to
R, which justifies the existence and uniqueness of h̃q .
Outline of the Proof of Proposition 4.6 With Step 1 below, we bound from above the
difference between the finite size exponential decay rate of Pβ(Vn,qn2) and its limit as n
tends to ∞. In Step 2, we divide Pβ(VN ,qN2) into a main term MN ,q and an error term
EN ,q . The main term is obtained by adding to the definition of VN ,qN2 some constraints
concerning the possible values taken by XaN , AaN , XN−aN and AN−aN−1 for an ad hoc
sequence (aN )N≥1 satisfying both aN = o(N ) and limn→∞ aN = ∞. The EN ,q term is
bounded above in Step 3, while in Step 4 we provide a sharp estimate of MN ,q , and we
conclude the proof by computing the pre-factors in the estimate of Pβ(VN ,qN2).

5.1 Step 1

The aim of this step is to prove the following Proposition, which is a strong improvement
of [4,Proposition 2.3] since we bound from above the gap between discrete quantities and
their continuous counterparts by n−2 instead of n−1. As mentioned in Remark 4.7 above,
our proof is close in spirit to that of [15,Theorem 2], in particular for Proposition 5.4 below.
Recall the definitions of ψn,h and ψ̃ from (5.4) and (2.5) respectively, and notice that q 
→
1
nψn,hqn

(qn2, 0) (resp. q 
→ ψ̃(q)) is the Legendre transform of Gn (resp. G).

Proposition 5.1 For [q1, q2] ⊂ (0,∞), there exists constants C > 0 and n0 ∈ N such that
for every n ≥ n0 and q ∈ [q1, q2] ∩ N

n2
,

∣
∣
∣
∣
1

n
ψn,hqn

(qn2, 0) − ψ̃(q)

∣
∣
∣
∣ ≤ C

n2
, (5.10)

and
∣
∣hqn − h̃q

∣
∣ ≤ C

n2
. (5.11)

We recall (5.3) and (5.9) where the definitions of Gn and G are displayed respectively. Let
us first claim two lemmata which state that G′

n and G′ are C1-diffeomorphisms.

Lemma 5.2 For every n ≥ 2, the function Gn is C∞, strictly convex, even and satisfies
G′
n(h) → +∞ as h ↗ nβ

n−1 . Moreover, there exists R > 0 such that (Gn)′′(h) ≥ R for every

n ≥ 2 and h ∈ (− n β
n−1 ,

n β
n−1 ). As a consequence, (Gn)′ is an increasing C1 diffeomorphism

from (− n β
n−1 ,

n β
n−1 ) to R and (Gn)′(0) = 0.

Lemma 5.3 The function G is C∞, strictly convex, even and satisfies G′(h) → +∞ as h ↗ β.
Moreover, there exists an R > 0 such that (G)′′(h) ≥ R for h ∈ (−β, β). As a consequence,
(G)′ is an increasing C1 diffeomorphism from (−β, β) to R and (G)′(0) = 0.
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Those results are straightforward consequences of (2.2), so we do not detail them any further.
Let us then recall that hqn is the unique solution in h of (Gn)′(h) = q and that h̃q is the unique
solution in h of G′(h) = q . At this stage, we state a key result which substantially improves
[4,Lemma 5.1] and [8,(4.7)], giving an upper bound of order n−2 instead of n−1. Its proof is
postponed to Appendix A.2.

Proposition 5.4 For every K ∈ (0, β), there exist a CK > 0 and a nK ∈ N such that for
j ∈ {0, 1}

sup
h∈[−β+K ,β−K ]

∣
∣G( j)

n (h) − G( j)(h)
∣
∣ ≤ CK

n2
, ∀n ≥ nK . (5.12)

With the help of Lemma 5.3 we can state the following corollary of Proposition 5.4.

Corollary 5.5 For every M > 0, there exists a K > 0 such that G ′
(β − K ) ≥ 2M and

G ′
(K ) ≤ 1

2M ; and there exists an n0 ∈ N such that G ′
n(β − K ) ≥ M and G ′

n(K ) ≤ 1
M for

every n ≥ n0.

Remark 5.6 A straightforward consequence of Corollary 5.5 is that for [q1, q2] ⊂ (0,∞)

there exists a K > 0 and an n0 ∈ N such that for every q ∈ [q1, q2] and every n ≥ n0
we have hqn , h̃q ∈ [K , β − K ]. Moreover, since L is C∞ on (−β/2, β/2) we deduce for
j ∈ N ∪ {0} and 0 < q1 < q2 < +∞,

sup
{∣
∣
∣L( j)(hqn(

1
2 − x)

)∣∣
∣ ; x ∈ [0, 1], q ∈ [q1, q2], n ∈ N

}
< +∞ .

Proof of Proposition 5.1 We now have all the required tools in hand to prove Proposition
5.1. By using Lemma 5.3, Proposition 5.4 and Remark 5.6, we can state that there exist
K > 0, C > 0 and R > 0 such that for n large enough and q ∈ [q1, q2] ∩ N/n2 we have
hqn , h̃q ∈ [K , β − K ], so

∣
∣hqn − h̃q | ≤ 1

R

∣
∣
∣

∫ h̃q

hqn
G′′(x) dx

∣
∣
∣ = 1

R

∣
∣G′(hqn) − G′(̃hq)

∣
∣

= 1

R

∣
∣G′(hqn) − G′

n(h
q
n)
∣
∣ ≤ C

R n2
, (5.13)

where we have used that q = G′(̃hq) = G′
n(h

q
n) for the second equality in (5.13). The proof

of (5.11) is therefore completed.
It remains to prove (5.10). To that aim we write

∣
∣hqn q − Gn(hqn) − h̃q q + G(̃hq)

∣
∣ ≤ Un,q + q2

∣
∣hqn − h̃q

∣
∣, (5.14)

whereUn,q := |Gn(hqn) − G(̃hq)|. Proposition 5.4 also tells us that there exists a C > 0 such
that for n large enough and for every x ∈ [K , β −K ]we have |Gn(x)−G(x)| ≤ C/n2. Thus,
since G is C1 and recalling Remark 5.6 we can write

Un,q ≤ ∣
∣Gn(hqn) − G(hqn)

∣
∣+ ∣

∣G(hqn) − G(̃hq0)
∣
∣

≤ C

n2
+ sup

{|G′(x)|, x ∈ [K , β − K ]}∣∣hqn − h̃q
∣
∣. (5.15)

At this stage, (5.10) is obtained by combining (5.14) with (5.11) and (5.15). This completes
the proof of Proposition 5.1. ��
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5.2 Step 2

We recall (4.17) and (5.4) and we pick a sequence aN ∈ N, N ∈ N such that log N � aN �√
N . We define the two boxes

CN := [
EN ,hqN

(XaN ) − (aN )3/4,EN ,hqN
(XaN ) + (aN )3/4

]
,

DN := [
EN ,hqN

(AaN ) − (aN )7/4,EN ,hqN
(AaN ) + (aN )7/4

]
, (5.16)

and rewrite Pβ(VN ,qN2) = MN ,q + EN ,q where

MN ,q := Pβ

[
VN ,qN2 ∩ {XaN ∈ CN , AaN ∈ DN

} ∩ {XN−aN ∈ CN , AN − AN−aN−1 ∈ DN
}]

.

(5.17)

From now on, MN ,q is referred to as the main term and EN ,q as the error term. The proof
of Proposition 4.6 is a straightforward consequence of Lemmata 5.7–5.8 displayed below,
which are proven in Steps 3 and 4, respectively.

Let us startwith the followingLemma,which allowsus to control the error thermuniformly
in q belonging to any compact set of (0,∞).

Lemma 5.7 For [q1, q2] ⊂ (0,∞), there exists ε : N 
→ R
+ such that limN→∞ ε(N ) = 0

and for every N ∈ N and q ∈ [q1, q2] ∩ 1
N2

EN ,q ≤ ε(N )

N 2 e−N ψ̃(q). (5.18)

With the next Lemma, we estimate the main therm uniformly in q belonging to any
compact set of (0,∞). Recall (2.8) and (2.6) for the definitions of κ and ϑ .

Lemma 5.8 For β > 0 and [q1, q2] ⊂ (0,∞),

MN ,q = κ
( h̃q
2

)2
(
ϑ(̃hq)

)− 1
2

2πN 2 e−N ψ̃(q) (1 + o(1)) , (5.19)

where o(1) is a function that converges to 0 as N → ∞ uniformly in q ∈ [q1, q2] ∩ N

N2 .

5.3 Step 3: Proof of Lemma 5.7

Before starting the proof, let us make a quick remark about the time-reversibility of the
random walk X of law Pn,h .

Remark 5.9 (Time-reversal property) Recall the definition of P̃h from (2.7). For h ∈
(−β/2, β/2), one can easily check that if Z is a random variable of law P̃−h then −Z
has law P̃h . Moreover, as explained below (5.4), if the n-step random walk X := (Xi )

n
i=0

has law Pn,h , then its increments (Xi − Xi−1)
n
i=1 are independent and for i ∈ {1, . . . , n}

the law of Xi − Xi−1 is P̃ with parameter h
2 (1 − 2i−1

n ). A first consequence is that X is
time-reversible, i.e.,

(Xi )
n
i=0 =

Law
(Xn−i − Xn)

n
i=0 . (5.20)

A second consequence is that, under Pn,h , the random walk (Xi )
n
i=0 is an inhomogeneous

Markov chain which, for j ∈ {1, . . . , N − 1}, y ∈ Z and O ⊂ Z
n− j−1 satisfies that

Pn,h
(
(X j+i )

n− j−1
i=1 ∈ O, Xn = 0 | X j = y

) = Pn,h
(
(Xn− j−i )

n− j−1
i=1 ∈ O, Xn− j = y

)
.

(5.21)
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Note finally that the case h = 0 corresponds to the random walk X with i.i.d. increments of
law Pβ .

A straightforward application of (5.20) with n = N and h = 0 allows us to bound the
error term from above as

EN ,q ≤ 2Pβ

(
VN ,qN2 ∩ {XaN /∈ CN })+ 2Pβ

(
VN ,qN2 ∩ {AaN /∈ DN }) . (5.22)

Using (5.4) we obtain that for B = {XaN /∈ CN } or B = {AaN /∈ DN }

Pβ

(
VN ,qN2 ∩ B

) ≤ e
−ψ

N ,h
q
N

(qN2,0)
PN ,hqN

(VN ,qN2 ∩ B) . (5.23)

Note that, the first inequality in Proposition 5.1 allows us to replace ψN ,hqN
(qN 2, 0) with

N ψ̃(q) in the exponential of the r.h.s. in (5.23), at the cost of an at most constant factor.
Therefore, the proof of Lemma 5.7 is completed by the following Claim.

Claim 5.10 For [q1, q2] ⊂ (0,∞), there exists ε : N 
→ R
+ such that limN→∞ ε(N ) = 0

and for every N ∈ N and q ∈ [q1, q2] ∩ N

N2

PN ,hqN
(VN ,qN2 ∩ {XaN /∈ CN }) + PN ,hqN

(VN ,qN2 ∩ {AaN /∈ DN }) ≤ ε(N )

N 2 . (5.24)

Proof Let us prove that (5.24) holds true for RN ,q := PN ,hqN
(VN ,qN2 ∩ {XaN /∈ CN }) and for

SN ,q := PN ,hqN
(VN ,qN2 ∩ {AaN /∈ DN }).

We set {X[ j,k] > 0} := {Xi > 0, j ≤ i ≤ k} for j ≤ k ∈ N. We develop RN ,q depending
on the values y and z taken by XaN and AaN respectively. Then we use Markov property at
time aN , combined with the time reversal property (5.21) with n = N , h = hqN , j = aN and

O =
{
x ∈ N

N− j−1 :
N− j−1∑

i=1

xi = qN 2 − z
}
,

on the time interval [aN , N ] to obtain

RN ,q =
∑

y∈N\CN

∑

z∈N
PN ,hqN

(XaN = y, AaN = z, X[1,aN ] > 0)

× PN ,hqN
(X[1,N−aN ] > 0, XN−aN = y, AN−aN−1 = qN 2 − z) .

(5.25)

Let R1
N ,q := RN ,q(|y| ≤ N/aN , |z| ≤ N 2/aN ), R2

N ,q := RN ,q(|y| > N/aN ) and

R3
N ,q := RN ,q(|z| > N 2/aN ), where RN ,q(A) denotes the sum from (5.25) restricted to

terms satisfying the condition A; so that

RN ,q ≤ R1
N ,q + R2

N ,q + R3
N ,q . (5.26)

Let us prove the upper bound (5.24) for all three terms in the r.h.s., starting with R1
N ,q .

Lemma 5.11 For [q1, q2] ⊂ (0,∞), there exists a C > 0 such that for every N ≥ 1 and
q ∈ [q1, q2] ∩ N

N2 and (y, z) ∈ Z
2 with |y| ≤ N/aN , |z| ≤ N 2/aN ,

PN ,hqN
(XN−aN = y, AN−aN−1 = qN 2 − z) ≤ C

N 2 . (5.27)
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We prove this Lemma afterwards. Plugging this in the development (5.25) and dropping
the condition X[1,aN ] > 0, we obtain

R1
N ,q ≤ C

N 2PN ,hqN
(XaN /∈ CN ) . (5.28)

Recalling (5.4) and the subsequent remark, a straightforward computation gives us that

VarN ,hqN

(
XaN

) =
aN∑

i=1

L′′( hqN
2 (1 − 2i−1

N )
)

, (5.29)

where we used, for U distributed as P̃δ and |δ| < β/2, Var(U ) = L′′(δ) (recall (2.7)). By
using Tchebychev inequality we obtain

PN ,hqN
(XaN /∈ CN ) = PN ,hqN

(|XaN − EN ,hqN
(XaN )| > (aN )3/4

)

≤ 1

a3/2N

VarN ,hqN

(
XaN

)

≤ 1

a1/2N

sup
x∈[0,1]

∣
∣
∣L′′(hqN ( 12 − x)

)∣
∣
∣

≤ (const.)√
aN

, (5.30)

where the last inequality is a consequence of Remark 5.6; in particular the constant is uniform
in N ∈ N and q ∈ [q1, q2] ∩ N

N2 . It remains to combine (5.28) and (5.30) to complete the

proof for R1
N ,q .

Regarding R2
N ,q , let (Ui )i≥1 be the increments of the process X . Recalling (5.4) and

applying a Chernov inequality for some λ > 0 small, we have

∑

y>N/aN

PN ,hqN
(XaN = y, AaN = z, X[1,aN ] > 0)

≤ PN ,hqN
(XaN > N/aN )

≤ Eβ,0

[

exp

(

λ(XaN − N/aN ) +
aN∑

i=1

Ui

(hqN
2

(
1 − 2i − 1

N

))
− L

(hqN
2

(
1 − 2i − 1

N

))
)]

≤ e−λN/aN ec aN ≤ C e
− λN

2aN , (5.31)

for some c > 0,C > 0, which can be taken uniformly in q ∈ [q1, q2]. The same upper bound
holds for the sum over y < −N/aN , hence

R2
N ,q ≤

∑

z∈Z
PN ,hqN

(AN−aN−1 = qN 2 − z)

×
∑

|y|>N/aN

PN ,hqN
(XaN = y, AaN = z, X[1,aN ] > 0)

≤ 2C e
− λN

2aN . (5.32)
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The last term R3
N ,q can be handled similarly, by noticing that AaN > N 2/aN implies

Xi > N 2/a2N for some 1 ≤ i ≤ aN , thereby

∑

z>N2/aN

PN ,hqN
(XaN = y, AaN = z, X[1,aN ] > 0)

≤ PN ,hqN
(AaN > N 2/aN ) ≤

aN∑

i=1

PN ,hqN
(Xi > N 2/a2N ) ≤ C aNe

− λN2

2a2N ,

where we reproduced (5.31). Similarly to (5.32), we obtain an upper bound on R3
N ,q , and

recollecting (5.26) with (5.28), (5.30) and (5.32), this finally proves (5.24) for RN ,q .
Let us now consider SN ,q , which we develop similarly to (5.25). Notice that the term

SN ,q(y /∈ CN ) is already bounded from above by RN ,q , and that SN ,q(|z| > N 2/aN ) follows
the same upper bound as R3

N ,q (we do not replicate the proof), thus we only have to prove

(5.24) for S1N ,q := SN ,q(y ∈ CN , |z| ≤ N 2/aN ) to complete the proof of Claim 5.10.
Recalling Lemma 5.11, we have

S1N ,q ≤ C

N 2PN ,hqN
(AaN /∈ DN ) . (5.33)

Let (Ui )i≥1 denote the increments of the process X , and recall AaN = ∑aN
i=1 Xi ; in particular,

we may rewrite AaN = ∑aN
i=1(aN +1− i)Ui . Similarly to (5.29), a direct computation gives

VarN ,hqN

(
AaN

) =
aN∑

i=1

(aN + 1 − i)2L′′( hqN
2 (1 − 2i−1

N )
)

,

and using Tchebychev inequality, we obtain

PN ,hqN
(AaN /∈ DN ) ≤ 1

a7/2N

VarN ,hqN

(
AaN

)

≤ 1

a1/2N

sup
x∈[0,1]

∣
∣
∣L′′(hqN ( 12 − x)

)∣
∣
∣

≤ (const.)√
aN

, (5.34)

for some constant uniform in N ∈ N and q ∈ [q1, q2] ∩ N

N2 , where the last inequality is
a consequence of Remark 5.6. Combining this with (5.33), this concludes the proof of the
Claim. ��
Proof of Lemma 5.11 To lighten upcoming formulae in this proof, let us write N1 := N −aN .
Recall (5.4), and that Pβ,y denotes the law of the random walk starting from y ∈ Z with
increments distributed as Pβ . Summing over possible values for (XN , AN−1) and using
Markov property, we write

PN ,hqN
(XN1 = y, AN1−1 = qN 2 − z)

=
∑

(u,v)∈Z2

PN ,hqN
(XN1 = y, AN1−1 = qN 2 − z, XN = u, AN−1 = v)

=
∑

(u,v)∈Z2

e
ψ
N ,h

q
N

(v,u)
Pβ,0(XN1 = y, AN1−1 = qN 2 − z, XN = u, AN−1 = v)
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=
∑

(u,v)∈Z2

e
ψ
N ,h

q
N

(v,u)
Pβ,0(XN1 = y, AN1−1 = qN 2 − z)Pβ,y(XaN

= u, AaN−1 = v − qN 2 + z − y) = PN1,h
q
N1

(XN1

= y, AN1−1 = qN 2 − z) ×
∑

(u,v)∈Z2

exp
(
ψN ,hqN

(v, u) − ψN1,h
q
N1

(qN 2 − z, y)
)
Pβ,y(XaN

= u, AaN−1 = v − qN 2 + z − y) , (5.35)

where we obtained the third equality by splitting the walk at time N1, requiring the second
bit to start from height y and to cover an area v− AN1−1− XN1 = v−qN 2+ z− y (recall the
definition of An(X), n ∈ N from (2.4)). A straightforward consequence of Proposition 6.1
and Remark 6.2 from Appendix A.1 is that the first factor is uniformly controlled by C

N2 for
some uniform C > 0, so it remains to prove that the second factor is uniformly bounded. We
notice

Pβ,y(XaN = u, AaN−1 = v − qN 2 + z − y) = Pβ,0(XaN = u − y, AaN−1

= v − qN 2 + z − y aN ) ,

so the sum in (5.35) can be written as

Eβ,0

[
exp

(
ψN ,hqN

(
AaN−1 + qN 2 − z + y aN , XaN + y

)− ψN1,h
q
N1

(qN 2 − z, y)
)]

.

(5.36)
Furthermore, we claim that for all q ∈ R,

L
(
h̃q/2

)− q h̃q − G
(
h̃q
) = 0 . (5.37)

Indeed,

L
(
h̃q/2

)− G
(
h̃q
) = −

∫ 1

0
L
(
h̃q( 12 − y)

)
dy + L(̃hq/2)

=
∫ 1

0

∫ 1

y
h̃qL′(h̃q(u − 1

2 )
)
du dy

= h̃q
∫ 1

0
uL′(h̃q(u − 1

2 )
)
du

= h̃q G′(h̃q
) = h̃q q ,

where we have used that L is even to obtain the second line and that h̃q is solution in h of
G′(h) = q (recall Step 1) to obtain the last line.

Recollecting (5.35–5.37), Proposition 5.1 and the definition of G (5.9), we deduce from
a direct computation that there exists N0 ∈ N and a C1 > 0 uniform in q ∈ [q1, q2] ∩ N

N2 ,

N ≥ N0 and |y| ≤ N/aN , |z| ≤ N 2/aN such that

PN ,hqN
(XN1 = y, AN1−1 = qN 2 − z)

≤ C1

N 2 e
−aNL(̃hq/2) Eβ,0

[

exp

(

2h̃q
AaN−1

N
− h̃q

2
XaN

(
1 − 2

N

)
)]

. (5.38)
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Finally, we conclude the proof of Lemma 5.11 by showing that the latter factor is bounded
from above by eaNL(̃hq/2). Let (Uj ) j≥1 be the increments of X , and recall AaN = ∑aN

i=1(aN +
1 − i)Ui . Then,

Eβ,0

[

exp

(

2h̃q
AaN−1

N
− h̃q

2
XaN

(
1 − 2

N

)
)]

= Eβ,0

⎡

⎣exp

⎛

⎝
aN∑

j=1

Uj h̃
q(− 1

2 + 2
N (aN + 3

2 − j)
)
⎞

⎠

⎤

⎦

=
aN∏

j=1

exp
(L(̃hq

(− 1
2 + 2

N (aN + 3
2 − j))

)

≤ eaNL(̃hq/2) , (5.39)

where we used that L is even and increasing on [0, β/2) (recall (2.2)). ��

5.4 Step 4: Proof of Lemma 5.8

Outline of the proof of Lemma 5.8. Recall (5.16–5.17). For conciseness, from now on we set
h := h̃q/2, x̄ = (x1, x2) and ā = (a1, a2), and we also define

HN := {(x̄, ā) ∈ C2N × D2
N } . (5.40)

Let us decompose MN ,q by summing over possible values of XaN , XN−aN ∈ CN and
AaN , AN − AN−aN ∈ DN . Using Markov property at times aN and N − aN , and apply-
ing time-reversibility on the part of the walk between times N − aN and N (i.e., (5.20) with
n = aN and h = 0), we may write

MN ,q =
∑

(x̄,ā)∈HN

RN (x1, a1) TN (x̄, ā) RN (x2, a2) , (5.41)

with

RN (x, a) := Pβ,0(X[1,aN ] > 0, XaN = x, AaN = a) , (5.42)

and, after setting N2 = N − 2aN ,

TN (x̄, ā) := Pβ,0
(
XN2 = x2−x1, AN2−1 = qN 2−a1−a2−x1(N2−1), X[0,N2] > −x1

)
.

(5.43)
Then, the proof of Lemma 5.8 is divided into three steps.

(a) We perform a change of measure in RN (x1, a1), RN (x2, a2) by tilting every increment
(Xi+1−Xi )

aN−1
i=0 uniformlywith P̃h , and in TN (x̄, ā) by applying the tilting introduced in

(5.4) with coefficients (N2, h
q
N2

). We prove that the combined exponential factors given

by those changes of measure are equivalent to exp(−N ψ̃(q)).
(b) Then we estimate TN (x̄, ā) under its tilted distribution by using the local limit theorem

for the vector (XN2 , AN2−1) displayed in Proposition 6.1, and by observing that the
additional constraint X[0,N2] > −x1 does not alter the asymptotics.

(c) Finally, after recombining the sum in MN ,q , we observe that it only remains to estimate
the probability that a random walk under the biased law P̃h remains positive, which has
an explicit, positive limit.

Step (a). We begin with RN (x1, a1) and RN (x2, a2). Recalling (2.7), we perform a change
of measure by tilting every increment (Xi+1 − Xi )

aN−1
i=0 with P̃h , that is for (x, a) ∈
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{(x1, a1), (x2, a2)},
RN (x, a) := e−hx+aNL(h) P̃h(Xi > 0,∀i ≤ aN , XaN = x, AaN = a) . (5.44)

For the second factor TN (x̄, ā) we apply the tilting introduced in (5.4) and we obtain

TN (x̄, ā) = G q
N ,x̄,ā e

−hqN2

(
qN2−a1−a2

N2
−x1
(
1− 1

N2

))

e
+

h
q
N2
2

(
1− 1

N2

)
(x2−x1)+N2 GN2 (hqN2

)
, (5.45)

with

G q
N ,x̄,ā := PN2,h

q
N2

[
ΛN2 = ( qN2−a1−a2

N2
− x1

(
1− 1

N2

)
, x2 − x1

)
, X[0,N2] > −x1

]
. (5.46)

Gathering (5.41), (5.44) and (5.45), we obtain

MN ,q =
∑

(x̄,ā)∈HN

eB
1
N ,q (ā)+B2

N ,q (x̄) P̃h(X[1,aN ] > 0, XaN = x1, AaN = a1) G
q
N ,x̄,ā

× P̃h(X[1,aN ] > 0, XaN = x2, AaN = a2) , (5.47)

with

B1
N ,q(ā) := N2 GN2(h

q
N2

) + 2 aN L(h) − hqN2

qN2−a1−a2
N2

,

B2
N ,q(x̄) := (x1 + x2)

[
hqN2
2

(
1 − 1

N2

)− h

]

. (5.48)

Remark 5.12 We claim that the expected values of XaN under P̃h and PN ,hqN
are very close.

Indeed, notice that Ẽh(X1) = L′(h) (so Ẽh(XaN ) = aNL′(h)), so recalling Remark 5.6 and
(5.11), we write

∣
∣aNL′(h) − EN ,hqN

(XaN )
∣
∣ =

∣
∣
∣

aN∑

i=1

L′(h) − Ẽ
hqN (1− i

N )− h
q
N
2 (1− 1

N )
(X1)

∣
∣
∣

≤
aN∑

i=1

∣
∣
∣L′( h̃q2 ) − L′( hqN

2 + hqN
2 ( 1−2i

N )
)∣
∣
∣

≤
aN∑

i=1

max
x∈
[
K
2 ,

β−K
2

]
∣
∣L′′(x)

∣
∣
(∣
∣
∣
h̃q−hqN

2

∣
∣
∣+ β

aN
N

)

≤ (const.)
( aN
N 2 + (aN )2

N

)
, (5.49)

which goes to 0 as N → ∞. In particular, there exist c1, c2, N0 > 0 such that c1 aN ≤
x ≤ c2 aN for every x ∈ CN , q ∈ [q1, q2] and N ≥ N0 (recall (5.16), and notice that L′(h)

is uniformly bounded away from 0). Moreover, a similar argument yields that EN ,hqN
(AaN )

remains close toL′(h)a2N/2, hence every a ∈ DN satisfies |a| ≤ (const.)a2N (we do not write
the details here).

Recalling (2.5), let us prove that

B1
N ,q(ā) + B2

N ,q(x̄) = −N ψ̃(q) + o(1) , (5.50)
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Henceforth, we drop the ā and x̄ dependency of B1
N ,q(ā) and B2

N ,q(x̄) for conciseness. Let

us first consider B2
N ,q . We recall that h = h̃q/2, thus

B2
N ,q = x1 + x2

2

(
hqN2

− h̃q − hqN2
N2

)
, (5.51)

which allows us to write the upper bound

|B2
N ,q | ≤ |x1| + |x2|

2

(∣
∣hqN2

− h̃q
∣
∣+

∣
∣
∣
hqN2
N2

∣
∣
∣
)

≤ (const.)
aN
N2

. (5.52)

where we used Proposition 5.1, Remark 5.12 and that |hqN2
| < β. Therefore, B2

N ,q converges
to 0 as N → ∞ uniformly in q ∈ [q1, q2].

Now, we consider B1
N ,q . We recall the definition of DN in (5.16), and using Remark 5.12

we write on the one hand

qN 2 − a1 − a2
N2

= qN + 2 q aN + O
( (aN )2

N

)
, (5.53)

and on the other hand,

N2 GN2(h
q
N2

) + 2 aN L(̃hq/2) − hqN2
(q N + 2 q aN )

= N2

[
G(̃hq) − h̃q q + O

( 1
(N2)2

)]+ 2 aN
[
L(̃hq/2) − 2 h̃q q + O

( 1
(N2)2

)]

= N
[
G(̃hq) − h̃q q

]+ 2aN
[
L(̃hq/2) − h̃q q − G(̃hq)

]+ O( 1
N2

) , (5.54)

which, by (5.10) and (5.11), holds uniformly in N ≥ N0 and q ∈ [q1, q2] ∩ N

N2 , provided N0

is chosen large enough. Plugging together (5.53) and (5.54), and recalling (5.37), we obtain
B1
N ,q = −N ψ̃(q) + o(1), which finishes the proof of (5.50).

Step (b). Recall (5.46): the aim of this step is to prove the following lemma.

Lemma 5.13 For β > 0,

G q
N ,x̄,ā =

(
ϑ(̃hq)

)− 1
2

2πN 2 (1 + o(1)) , (5.55)

where o(1) is a function that converges to 0 as N → ∞ uniformly in q ∈ [q1, q2] ∩ N

N2 and
(x̄, ā) ∈ HN .

Proof Let us first relax the constraint {X[0,N2] > −x1} in G q
N ,x̄,ā to define

Ḡ q
N ,x̄,ā := PN2,h

q
N2

[
ΛN2 = ( qN2−a1−a2

N2
− x1

(
1 − 1

N2

)
, x2 − x1

)]
. (5.56)

Using the local limit theorem from Proposition 6.1, we prove that Ḡ q
N ,x̄,ā satisfies (5.55).

Indeed, defining y = q(N 2−(N2)
2)−a1−a2−x1

N2−1
N2

and z = x2−x1, then Proposition 6.1
implies

sup
q∈[q1,q2]∩ N

N2

∣
∣(N2)

2Ḡ q
N ,x̄,ā − fh̃(q,0)

( y
(N2)3/2

, z√
N2

)∣
∣ −→
N→∞ 0 , (5.57)

where for h ∈ Dβ , fh is the density function of a bivariate, centered Gaussian vector with
covariance matrix Hess LΛ(h) (see Appendix A.1 for more details). Moreover, notice that
N 2 − (N2)

2 ≤ 4 N aN . Thus, Remark 5.12 yields that, for some C, N0 sufficiently large,

|y|
(N2)3/2

≤ C
aN√
N

and
|z|√
N2

≤ C
aN√
N

, for (x̄, ā) ∈ HN , q ∈ [q1, q2], N ≥ N0 .

(5.58)
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Recalling aN = o(
√
N ) and Remark 6.2, we have the uniform convergence

sup
q∈[q1,q2]

sup
(x̄,ā)∈HN

∣
∣
∣ fh̃(q,0)

( y
(N2)3/2

, z√
N2

)− fh̃(q,0)(0, 0)
∣
∣
∣ −→
N→∞ 0 . (5.59)

At this stage, we complete the proof of (5.55) for Ḡ q
N ,x̄,ā by observing that N2 ∼ N as

N → ∞, that fh̃(q,0)(0, 0) = ϑ(̃hq)−1/2 1
2π and by combining (5.57) and (5.59) with the

fact that fh̃(q,0) is bounded from above on R2, uniformly in q ∈ [q1, q2].
Regarding G q

N ,x̄,ā , let us define

Ĝ q
N ,x̄ =

N2−1∑

i=1

PN2,h
q
N2

(
XN2 = x2 − x1, Xi ≤ −c1aN

)
, (5.60)

where c1 is defined in Remark 5.12; hence

Ḡ q
N ,x̄,ā ≥ G q

N ,x̄,ā ≥ Ḡ q
N ,x̄,ā − Ĝ q

N ,x̄ . (5.61)

Thereby, the proof of Lemma 5.13 will be complete once we show that N 2 Ĝ q
N ,x̄ = o(1).

Since |x1− x2| ≤ 2(aN )3/4 we have that, for N large enough,−c1aN + x1− x2 ≤ −c1aN/2.
Thus, for i ∈ { N2

2 , . . . , N2−1}, the time-reversal property (5.20) (with n = N2 and h = hqN2
)

gives

PN2, h
q
N2

(
XN2 = x2 − x1, Xi ≤ −c1aN

) ≤ PN2, h
q
N2

(
XN2−i ≤ − c1

2 aN
)
. (5.62)

Coming back to (5.60) and using (5.62) for i ≥ N2/2 we can bound Ĝ q
N ,x̄ from above as

Ĝ q
N ,x̄ ≤ 2

N2/2∑

i=1

PN2,h
q
N2

(
Xi ≤ − c1

2 aN
) ≤ 2 e−

λ c1 aN
2

N2/2∑

i=1

EN2,h
q
N2

(
e−λXi

)
, (5.63)

for someλ > 0,wherewe used aChernov inequality.We claim that the latter sum is uniformly
bounded, therefore this concludes the proof of Lemma 5.13 (recall that aN � log N ). This
follows directly from the following lemma, which was already proven in [4] (we do not
reproduce the computations here). ��
Lemma 5.14 [4,Lemma 6.2] For [q1, q2] ⊂ (0,∞), there exist three positive constants
C ′,C1, λ such that for N large enough, the following bound holds true

EN ,hqN

[
e−λX j

] ≤ C ′ e−C1 j , for j ≤ N
2 and q ∈ [q1, q2] ∩ N

N2 .

Step (c). By plugging (5.50) and Lemma 5.13 into (5.47), we obtain

MN ,q = (1 + o(1))

(
ϑ(̃hq)

)− 1
2

2πN 2 e−N ψ̃(q) M̂N ,q , (5.64)

with
M̂N ,q :=

∑

(x̄,ā)∈HN

P̃h(X[1,aN ] > 0, XaN = x1, AaN = a1) P̃h(X[1,aN ] > 0, XaN = x2, AaN = a2)

= [
P̃h(X[1,aN ] > 0, XaN ∈ CN , AaN ∈ DN )

]2
, (5.65)

where we recall the definitions of CN ,DN from (5.16), and that h = h̃q/2. Recall also that
we defined κ(x) = P̃x (X[1,∞] > 0) for x ∈ [0, β/2) (see (2.8)). Therefore, the proof of
Lemma 5.8 is completed by the following lemma, and by recalling from Remark 5.6 that h
is bounded away from 0 uniformly in q ∈ [q1, q2]. Lemma 5.15 is proven afterwards. ��
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Lemma 5.15 (i) For β > 0 and x ∈ [0, β/2), one has

κ(x) = e2x − 1

ex+β/2 − 1
, (5.66)

in particular κ is continuous, increasing on [0, β/2), and positive on (0, β/2).
(i i) For β > 0, one has

P̃h(X[1,aN ] > 0, XaN ∈ CN , AaN ∈ DN ) = κ(h) + o(1) , (5.67)

where o(1) is a function that converges to 0 as N → ∞ uniformly in q ∈ [q1, q2].
Proof of Lemma 5.15 (i) Pick x ∈ [0, β/2) and define ρ = inf{i ≥ 1, Xi ≤ 0}, hence

1 − κ(x) = P̃x (ρ < ∞) = Eβ

[
exXρ−L(x)ρ1{ρ<∞}

] = Eβ

[
exXρ−L(x)ρ] ,

where we used (2.7) and that ρ < ∞ Pβ -a.s.. As claimed in the proof of Lemma 3.2, ρ and
Xρ are independent, and−Xρ follows a geometric law onN∪{0}with parameter 1− e−β/2.
Similarly to (3.24), (e−x Xn−L(x)n)n≥1 is a martingale under Pβ (recall that L is even), and
it is uniformly integrable when stopped at time ρ; thus Doob’s Optional Stopping Theorem
yields that

Eβ

[
e−L(x)ρ] = Eβ

[
e−x Xρ

]−1
.

Thereby,

1 − κ(x) = P̃x (ρ < ∞) = Eβ

[
exXρ

]
Eβ

[
e−x Xρ

]−1 = 1 − ex−β/2

1 − e−x−β/2 ,

which yields (5.66).

(i i) We write
∣
∣
∣̃Ph(X[1,aN ] > 0, XaN ∈ CN , AaN ∈ DN ) − κ(h)

∣
∣
∣

≤
∣
∣
∣̃Ph(X[1,aN ] > 0) − κ(h)

∣
∣
∣ + P̃h(XaN /∈ CN ) + P̃h(AaN /∈ DN ) , (5.68)

and we claim that all three terms in the r.h.s. above go to 0 as N → ∞ uniformly in
q ∈ [q1, q2].

We start with the first term in (5.68). Recalling Remark 5.6, there exist K > 0 such that
h ∈ [K , β − K ] for all q ∈ [q1, q2]. Then we write with a Chernov inequality,

0 ≤ P̃h(X[1,aN ] > 0) − κ(h) ≤
∞∑

j=aN+1

P̃h(X j ≤ 0) ≤
∞∑

j=aN+1

e−(L(h)−L(h−K/2)) j ,

(5.69)

and since L is convex and increasing, L(h) − L(h − K/2) ≥ L′(K/2) K2 > 0. Therefore,
the r.h.s. in (5.69) converges to 0 as N → ∞ uniformly in q ∈ [q1, q2].

Regarding the second term in (5.68), (5.16) and Remark 5.12 imply for N sufficiently
large,

{XaN /∈ CN } ⊂ {|XaN − L′(h) aN | ≥ 1
2 (aN )3/4} , (5.70)

where we recall Ẽh(X1) = L′(h). Then, Chernov inequality gives for t > 0,

P̃h(XaN ≥ L′(h) aN + 1
2 (aN )3/4) ≤ exp

(
aN
(
L(h + t) − L(h) − tL′(h)

)− t 12a
3/4
N

)
.

(5.71)
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Recalling (2.2) and Remark 5.6, there exists c > 0 such thatL(h+t)−L(h)−tL′(h) ≤ c t2

for t small enough, uniformly in q ∈ [q1, q2]. Letting ε > 0 and t = a−1/4−ε
N , we obtain for

N sufficiently large and some c′ > 0,

P̃h(XaN ≥ L′(h) aN + 1
2 (aN )3/4) ≤ e−c′a1/2−ε

N , (5.72)

uniformly in q ∈ [q1, q2]. The same bound holds for the event {XaN ≤ L′(h)aN − 1
2 (aN )3/4}

(we do not write the details again), and recollecting (5.70) this proves that the second term
in (5.68) goes to 0 as N → ∞ uniformly in q ∈ [q1, q2].

Finally, the third term in (5.68) is handled very similarly, first by observing that (5.16)
and Remark 5.12 imply

{AaN /∈ DN } ⊂ {|AaN − L′(h) a2N /2| ≥ 1
2 (aN )7/4} , (5.73)

then bywriting aChernov inequalitywith AaN = ∑aN
i=1(aN+1−i) Ui , where (Ui )

aN
i=1 ∼ P̃h

are i.i.d.. Details are left to the reader. ��

6 Proof of Theorem 2.2

We recall (3.8–3.11) and Remark 3.1. For an event A we denote by ZL,β(A) the partition
function restricted to trajectories in A ∩ ΩL , i.e.,

ZL,β(A) =
∑

�∈A∩ΩL

eHL,β (�) .

For L ∈ N, the function k 
→ PL,β

(|Imax(�)| ≥ L − k) is non decreasing. Therefore,
proving (2.15) with PL,β

(|Imax(�)| ≥ L − 3k) implies the result. Pick � ∈ ΩL , and let
Jk := max{ j ≥ 0 : X j ≤ k}. Note that, if � ∈ ΩL has no bead starting in {k, . . . , L − k}
and if the last bead of � starting before k begins with at most k − 1 horizontal steps, then the
longest sequence of non-zero vertical stretches of alternating signs in � has a total length at
least L − 3k, i.e.,

AL,k ∩ BL,k ⊂ {|Imax(�)| ≥ L − 3k} . (6.1)

with

AL,k := {� ∈ ΩL : X ∩ {k, . . . , L − k} = ∅}
BL,k := {� ∈ ΩL : ∃ j ∈ {1, . . . , k} : �τJk

+ j �= 0} . (6.2)

Since k 
→ PL,β

(|Imax(�)| ≥ L − 3k) is non decreasing and since (6.1) yields

{|Imax(�)| ≥ L − 3k}c ⊂ (AL,k)
c ∪ (AL,k ∩ (BL,k)

c) ,

it follows that Theorem 2.2 will be proven once we show that for every ε > 0 there exists a
kε ∈ N and a Lε ∈ N such that on the one hand Lε ≥ 3kε and on the other hand, for L ≥ Lε,

PL,β

(
(AL,kε )

c) ≤ ε and PL,β

(
AL,kε ∩ (BL,kε )

c) ≤ ε . (6.3)

For simplicity let us write α = −G̃(aβ). A straightforward consequence of Theorem 2.1
and Corollary 4.2 is that there exists 0 < C1 < C2 < ∞ such that for every L ∈ N,

C1

L3/4 eβL−α
√
L ≤ Ẑ ◦

L,β ≤ ZL,β ≤ C2

L3/4 eβL−α
√
L . (6.4)
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Thus for k, L ∈ N such that L ≥ 3k we can write

PL,β

(
(AL,k)

c) ≤
L−k∑

j=k

PL,β

(
j ∈ X

) = 1

ZL,β

L−k∑

j=k

Z c
j,β ZL− j,β(�1 ≥ 0)

≤ 1

ZL,β

L−k∑

j=k

Z j,β ZL− j,β

≤ (const.) eα
√
L L3/4

L−k∑

j=k

1

j3/4
e−α

√
j 1

(L − j)3/4
e−α

√
L− j

≤ (const.)
L−k∑

j=k

L3/4

j3/4 (L − j)3/4
e−α(

√
j+√

L− j−√
L)

≤ (const.)
L/2∑

j=k

1

j3/4
e−

α
√

j
2 ≤ (const.)

∞∑

j=k

1

j3/4
e−

α
√

j
2 , (6.5)

where in the second line we have used (6.4) and in the last line we have used the convex
inequality:

√
L−√

L − j ≤ 1
2

√
j for 0 ≤ j ≤ L/2. Since the r.h.s. in (6.5) does not depend

on L and vanishes as k → ∞, the leftmost inequality in (6.3) is proven.
Let us now deal with the second inequality in (6.3). For L ≥ 3k, we partition the set

AL,k ∩ (BL,k)
c by recording r (respectively s), the rightmost (resp. leftmost) point in X that

is smaller than k (resp. larger than L−k). Moreover, the fact that � ∈ (BL,k)
c implies that the

bead which covers the interval {k, . . . , L − k} begins with k zero-length vertical stretches.
Thus,

ZL,β(AL,k ∩ (BL,k)
c) =

k−1∑

r=0

L∑

s=L−k+1

ZL,β({X ∩ {r , . . . , s} = {r , s}} ∩ (BL,k)
c)

=
k−1∑

r=0

L∑

s=L−k+1

Z c
r ,β Ẑ ◦

s−r ,β(�1 = · · · = �k = 0) ZL−s,β(�1 ≥ 0)

≤ 2
k−1∑

r=0

L∑

s=L−k+1

Z c
r ,β Ẑ ◦

s−r−k,β ZL−s,β(�1 ≥ 0)

= 2 ZL−k,β({X ∩ {r , . . . , s − k} = {r , s − k}}) , (6.6)

where the third line in (6.6) is obtained by observing that Ẑ ◦
j,β(�1 = · · · = �k = 0) ≤

2Ẑ ◦
j−k,β for j ≥ k + 2. The factor 2 in the r.h.s. of the latter inequality comes from the

fact that there is no constraint on the sign of the (k + 1)-th stretch of � ∈ Ω̂ ◦
j satisfying

�1 = · · · = �k = 0. The r.h.s. in the fourth line of (6.6) is obviously bounded above by
2 ZL−k,β and therefore,

PL,β

(
AL,k ∩ (BL,k)

c) = ZL,β(AL,k ∩ (BL,k)
c)

ZL,β

≤ 2 ZL−k,β

ZL,β

. (6.7)

It remains to use (6.4) so that (6.7) becomes

PL,β

(
AL,k ∩ (BL,k)

c) ≤ (const.)
L3/4

(L − k)3/4
e−βke−α(

√
L−k−√

L)
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≤ (const.) e−βke−α(
√
L−k−√

L) . (6.8)

For ε > 0 we pick kε ∈ N such that (const.) e−βkε ≤ ε/2. Moreover, a straightforward
computation gives us that limL→∞

√
L − kε − √

L = 0. This completes the proof of the
rightmost inequality in (6.3) and ends the proof of Theorem 2.2.
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A Appendix

A.1 Local Limit Theorem for Large Swiped Areas

In this section we provide a local limit theorem for random walks under distributions Pn,h

(recall (5.4)), for which events such as { 1nΛn(X) = (q, 0)}, q > 0 become typical. This
theorem was proven in [8,Theorem 4.2] and then refined in [4,Proposition 6.1] by showing
that the convergence holds uniformly in q ∈ [q1, q2]. It is required to prove Proposition 4.6,
more precisely for Lemmata 5.7–5.8.

Recall (5.5–5.8), and set

B(h) := Hess LΛ(h) , h ∈ Dβ . (A.1)

For q ∈ R, we consider the density function of a centered Gaussian vector distribution with
covariance matrix B(̃h(q, 0)),

fh̃(q,0)(x̄) := (Det(B(̃h(q, 0))))−1/2

2π
exp

(− 1
2 〈B(̃h(q, 0))−1 x̄ , x̄〉), x̄ ∈ R

2 . (A.2)

This latter expression is well-posed: indeed, from the definition of L (2.2) we deduce easily
that L′′(h) > 0 for h ∈ (−β/2, β/2). As a consequence, we can rule out the equality case
when applying the Cauchy–Schwartz inequality to (2.6), so we deduce

ϑ(̃hq) = Det(B(̃h(q, 0))) > 0 , q ∈ R . (A.3)

Proposition 6.1 [4,Proposition 6.1] For [q1, q2] ⊂ (0,∞), we have

sup
q∈[q1,q2]∩ N

n2

sup
y,z∈Z

∣
∣n2 Pn, hqn

(
An−1 = n2q + y, Xn = z) − fh̃(q,0)

( y
n3/2

, z√
n

)∣
∣ −→
n→∞ 0 .

Remark 6.2 Recall (A.1–A.3). Since LΛ is convex on Dβ , (A.3) is sufficient to assert that
B(̃h(q, 0)) is a symmetric positive-definite matrix for every q ∈ R. Thus, the eigenvalues
of B(̃h(q, 0)) are positive and continuous in q ∈ R. This yields that, for [q1, q2] ⊂ (0,∞),
the eigenvalues of B(̃h(q, 0)) are bounded above and below by positive constants that are
uniform in q ∈ [q1, q2]. Therefore, there exists a compact subset K ⊂ (0,∞) such that
ϑ(̃hq) ∈ K for every q ∈ [q1, q2]. From (A.2), the latter implies that fh̃(q,0) is bounded from

above on R2 , uniformly in q ∈ [q1, q2].
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A.2 Proof of Proposition 5.4

Let us start with the case j = 0. We recall (5.3) and we set

fN ,h(x) := L( h2 (1 + 1
N ) − h x

N ) , (A.4)

and therefore NGN (h) = ∑N
i=1 fN ,h(i). We apply the Euler–Maclaurin summation formula

(see e.g. [17,Theorem 0.7]) and since fN ,h is C2 we obtain that

NGn(h) = A(N , h) + B(N , h) , (A.5)

with

A(N , h) := fN ,h(1) + fN ,h(N )

2
+
∫ N

1
fN ,h(x) dx , (A.6)

and

B(N , h) := 1

2

∫ N

1
f ′′
N ,h(x)

(
B2(0) − B2(x − �x�)) dx , (A.7)

where B2 is the second Bernoulli polynomial.
We start by considering A(N , h). Recalling the definition of L in (2.2) and the fact that

Pβ is symmetric, we claim that L is even and therefore

fN ,h(1) + fN ,h(N )

2
= L

(h

2
− h

2N

)
. (A.8)

We recall the definition of G in (5.9) and a straightforward computation gives
∫ N

1
fN ,h(x) dx = N

∫ 1−1/2N

1/2N
L(h( 12 − y)) dy

= NG(h) − 2N
∫ 1/2N

0
L(h( 12 − z)) dz , (A.9)

wherewe have used the change of variable y = x/N to get the first equality and the parity ofL
combined with the change of variable z = 1− y to obtain the second equality. Obviously, for
N large enough and for every h ∈ [−β+K , β−K ]we have that both h

2 and
h
2 (1− 1

N ) belong

toRK := [− β
2 + K

2 ,
β
2 − K

2

]
. Recalling Remark 5.6, we set C ′

K := max{|L′(x)|, x ∈ RK }
and for N large enough

∣
∣
∣L
(h

2
− h

2N

)
− L

(h

2

)∣
∣
∣ ≤ C ′

K
|h|
2N

≤ β C ′
K

1

2N
, (A.10)

and
∣
∣
∣2N

∫ 1/2N

0
L(h( 12 − z))dz − L( h2 )

∣
∣
∣ ≤ 2N

∫ 1/2N

0
C ′
K |h| zdz ≤ β C ′

K
1

4N
. (A.11)

Combining (A.8–A.11) we claim that, for N large enough

|A(N , h) − N G(h)| ≤ β C ′
K

1
N , ∀h ∈ [−β + K , β − K ] . (A.12)

It remains to consider B(N , h) (recall (A.7)). To that aim, we compute the second derivative
of f ′′

N ,h and obtain

f ′′
N ,h(x) = h2

N2 L′′[ h
2 (1 + 1

N ) − h x
N

]
, x ∈ [1, N ] . (A.13)
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It turns out that for x ∈ [1, N ]we have | h2 (1+ 1
N )−h x

N | ≤ |h|
2 . Thus, h ∈ [−β +K , β −K ]

yields h
2 (1+ 1

N )−h x
N ∈ RK , so recalling Remark 5.6 we setC ′′

K := max{|L′′(x)|, x ∈ RK }
and we obtain | f ′′

N ,h(x)| ≤ C ′′
Kβ2/N 2. As a consequence, we can use (A.7) to write

∣
∣B(N , h)

∣
∣ ≤ C ′′

K
β2

N
max{|B2(u)|, u ∈ [0, 1]} . (A.14)

At this stage, it remains to combine (A.5), (A.12) and (A.14) to complete the proof of
Proposition 5.4 in the case j = 0.

Regarding the case j = 1, the proof is very similar.We can repeat (A.4–A.7) with NG′
N (h)

instead of NGN (h) and after redefining fN ,h as

fN ,h(x) := ( 1
2 (1 + 1

N ) − x
N

)
L′[ h2 (1 + 1

N ) − h x
N ] . (A.15)

Using that L′ is odd, introducing the function gh(u) := ( 12 − u)L′[h( 12 − u)] and computing
G′ from (5.9), we obtain that in this case

A(N , h) = N
∫ 1−1/2N

1/2N
( 12 − y)L′[h( 12 − y)] dy + 1

2 (1 − 1
N )L′[h( 12 − 1

2N )]

= NG′(h) + g( 1
2N ) − 2N

∫ 1/2N

0
g(u) du . (A.16)

Taking the derivative of g we obtain g′(u) = −L′[h( 12 −u)]−h( 12 −u)L′′[h( 12 −u)] so that
sup

u∈[0,1/2N ]
sup

h∈[−β+K ,β−K ]
|g′(u)| ≤ C ′

K + β C ′′
K . (A.17)

Therefore,
∣
∣
∣g( 1

2N ) − 2N
∫ 1/2N

0
g(u) du

∣
∣
∣ ≤ ∣

∣g( 1
2N ) − g(0)

∣
∣+ 2N

∫ 1/2N

0
|g(u) − g(0)| du

≤ (C ′
K + βC ′′

K )
1

N
. (A.18)

It remains to consider B(N , h) for which we need to compute f ′′
N ,h , i.e., for x ∈ [1, N ],

f ′′
N ,h(x) = 2h

N2 L′′[ h
2 (1+ 1

N ) − h x
N

]+ h2

N2

( 1
2 (1+ 1

N ) − x
N

)
L′′′[ h

2 (1+ 1
N ) − h x

N

]
. (A.19)

Thus, after defining C ′′′
K := max{|L′′′(x)|, x ∈ RK } and by mimicking the former proof we

obtain | f ′′′
N ,h(x)| ≤ (2C ′′

K β + β2 C ′′′
K )/N 2 for x ∈ [1, N ]. This is sufficient to claim (from

(A.7)) that

∣
∣B(N , h)

∣
∣ ≤ (2C ′′

K β + β2 C ′′′
K )

1

N
max{|B2(u)|, u ∈ [0, 1]} . (A.20)

We combine (A.16), (A.18) and (A.20) and it completes the proof of Proposition 5.4 in the
case j = 1. ��
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