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The present paper is dedicated to the 2-dimensional Interacting Partially
Directed Self Avoiding Walk constrained to remain in the upper-half plane
and interacting with the horizontal axis. This model has originally been intro-
duced to investigate the behavior of a homopolymer dipped in a poor solvent
and adsorbed along a horizontal hard wall. It is known to undergo a collapse
transition between an extended phase, inside which typical configurations of
the polymer have a large horizontal extension (comparable to their total size),
and a collapsed phase inside which the polymer looks like a globule.

It is conjectured in the physics literature (see, e.g., (Phys. A, Stat. Mech.
Appl. 318 (2002) 171) or (Phys. Rev. E 65 (2002) 056124)) that inside the
collapsed phase, a surface transition occurs between an adsorbed-collapsed
regime where the bottommost layer of the globule is pinned at the hard wall,
and a desorbed-collapsed regime where the globule wanders away from the
wall. In the present paper, we consider a simplified “single-bead” version of
the model, for which we establish rigorously the existence of the surface tran-
sition and exhibit its associated critical curve. To that aim, we display some
sharp asymptotics of the partition function of this simplified model within the
collapsed phase.
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Notation. Let N be the set of positive integers, and N0 := N ∪ {0}. Let (aL)L≤1 and
(bL)L≤1 be two sequences of positive numbers. We write that

(0.1) aL ∼L→∞ bL if lim
L→∞aL/bL = 1,

and also that

(0.2) aL � bL if c1bL ≤ aL ≤ c2bL ∀L≥ 1,

with c1, c2 two positive constants.

1. Introduction. In the present paper, we investigate a model for a 1 + 1 dimensional
polymer dipped in a poor solvent and simultaneously adsorbed along a horizontal hard wall.
Although the model has attracted a continuous attention in the physics literature starting
in the 1990s (see, e.g., [9, 10, 18]) until more recently (see, e.g., [21, 26] or [24]), it had,
up to our knowledge, not been considered so far in the mathematical literature. This model
interpolates between two families of polymer models that have been entirely solved in the
last 20 years, that is, the wetting of a 1+ 1-dimensional random walk adsorbed along a hard
wall (see, e.g., [6, 11] and [12]) and the collapse transition of the 2-dimensional Interacting
Partially-Directed Self-avoiding Walk (IPDSAW) (see [5] for a review).

The coupling parameters of the model are β ∈ [0,∞) the repulsion intensity between the
monomers and the solvent around them—or, equivalently, the attraction intensity in between
monomers—and δ ∈ [0,∞) the interaction intensity between the monomers and the hard
wall. We discuss in detail the phase diagram of the model in Section 2.2 below, but let us
mention already that the phase diagram is divided into two main phases:

• E : an Extended phase inside which a typical trajectory has a macroscopic horizontal ex-
tension, comparable to its total length,

• C: a Collapsed phase inside which the vertical width and the horizontal extension of a
typical configuration are comparable, and of smaller order than its total size.

It turns out that E can be divided into two sub-phases. A critical curve is indeed conjectured
to partition E into a Desorbed-Extended phase (DE) inside which the polymer wanders away
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from the hard wall and an Adsorbed-Extended phase (AE) inside which the polymer is lo-
calized along the wall (see, e.g., [9], Figure 2). The situation is more subtle in the Collapsed
phase where typical configurations look roughly like a globule (see Figure 2 (B)). The num-
ber of contacts between this globule and the hard-wall changes drastically inside C along
some other critical curve which triggers what physicists call a surface transition, that is a loss
of analyticity of the second order term (which is called surface order term in the rest of the
paper) of the exponential development of the partition function, whereas the leading order
term (i.e., the free energy) remains linear.

The aim of our paper is to investigate the collapsed phase and in particular the surface
transition mentioned above. However, due to major technical difficulties that we discuss in
the first open problems of Section 3.4, we are unable to characterize rigorously this surface
transition for the “full model”. For this reason, we introduce in Section 3 a simplified version
of our model called the single-bead model. In a few words (see Section 3.1 for more details)
every trajectory considered in our model can be decomposed into a family of sub-trajectories
called beads. Those beads are typically of finite size in E but are much larger inside C. Note
that, we can reasonably conjecture that inside C, a typical trajectory is made of a unique
macroscopic bead (this is proven, e.g., for the 2-dimensional IPDSAW in [20]). Thus, we
restrict the set of allowed paths to those forming only one bead. This alternative version of
the model turns out to be more tractable and should share many features with its nonrestricted
counterpart.

Let us give a short outline of the paper. In Section 2 below we begin with a rigorous
definition of the model and then we provide a qualitative description of its phase diagram.
With Theorem 2.2 we identify rigorously the Collapsed phase (C) and the Extended phase (E).
Section 3 is dedicated to the definition of the single-bead version of the model. Theorem 3.2,
which is the most important result of the paper, is stated in Section 3.3 and allows us to
characterize the surface transition with the help of sharp asymptotic developments of the
partition function inside C. We prove Theorem 3.2 (along with Corollary 3.3) in Section 4. We
delay the proofs of Theorem 2.2 and Proposition 3.1 to Section 5 for they are quite standard
(apart from the random walk representation introduced in Section 4). We then collect the
proofs of technical estimates in Section 6. Appendix A provides well-known results on the
wetting model, and Appendix B displays a (conditional) FKG inequality on random walks
with distribution Pβ (defined in (2.8) below).

2. Description of the model and phase diagram.

2.1. The model. For a polymer of length L ∈ N, the set of its allowed configurations is
denoted by �+L and consists of those trajectories of a 1+1-dimensional self-avoiding random
walk on Z

2 taking unitary steps up, down and to the right and constrained to remain above
the horizontal axis y = 0. An alternative representation of such trajectories can be given by
decomposing them according to their number of horizontal/rightward steps, and the length
and orientation of the vertical stretches in between, that is,

(2.1) �+L :=
⋃
N≥1

L+N,L :=
⋃
N≥1

{
(�i)

N
i=1 ∈ Z

N ;
N∑

i=1

|�i | = L−N,

k∑
i=1

�i ≥ 0,∀k ≤N

}
.

Henceforth, we only use this latter representation and we note that each vertical stretch is
followed by a horizontal step—in particular we assume that all trajectories end with a hori-
zontal step. For every � ∈�+L , we denote by N� its horizontal extension (i.e., its number of
horizontal steps) so that � ∈ L+N�,L

.
With each configuration we associate a Hamiltonian, which takes into account that

monomers are both attracting each other and adsorbed along the x-axis. To be more spe-
cific, a given � ∈ �+L is assigned an energetic reward β ≥ 0 for every self-touching (i.e., a
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FIG. 1. Representation of a polymer of length L= 29, with horizontal extension N = 11. Each self-touching (in
red) is rewarded with an energy β , and each contact with the wall (in green) is rewarded with δ.

pair of neighboring sites visited nonconsecutively by �) and an energetic reward δ ≥ 0 for
every contact with the x-axis (see Figure 1). Thus, define

(2.2) H(�) := β

N�∑
i=0

�i ∧̃�i+1 + δ

N�∑
k=1

1{∑k
i=1 �i=0},

where the operator ∧̃ is defined for any x, y ∈ Z by x ∧̃y :=min{|x|, |y|}1{xy≤0}, and where
we set �0 = �N�+1 = 0 for notational convenience. At this stage, we introduce the polymer
measure Pβ,δ

L , a probability on �+L defined as

(2.3) Pβ,δ
L (�)= eH(�)

Z+L,β,δ

, � ∈�+L,

where Z+L,β,δ is a normalization term called partition function of the system. The free energy

provides the exponential growth rate of Z+L,β,δ in L. It is defined as

(2.4) f (β, δ)= lim
L→∞

1

L
logZ+L,β,δ,

(we show that f is well defined in the proof of Theorem 2.2).

REMARK 2.1. The present model may be seen as an advanced version of IPDSAW, that
was introduced in [30]. For the latter model, there is no hard-wall preventing the polymer
to enter the lower half-plane and also no wetting interaction with the hard-wall. As a con-
sequence, the allowed configurations of IPDSAW are obtained by relaxing the constraint∑k

i=1 �i ≥ 0 in (2.1) and the Hamiltonian by removing the term δ
∑N

k=1 1{∑k
i=1 �i=0} in (2.2).

2.2. Phase diagram. Since the coupling parameters β and δ are both nonnegative, the
phase diagram is drawn on the first quadrant Q := [0,∞)2. Similarly to what is observed for
IPDSAW (see, e.g., [23] or [5]), the phase diagram can be divided into a collapsed phase C
inside which typical trajectories undergo a self-touching saturation and an extended phase E
inside which the horizontal extension of a typical trajectory is comparable to its total size.
To be more specific, inside C, we expect that a typical trajectory of length L (i.e., � sampled
from Pβ,δ

L ) satisfies H(�)= βL+o(L). For this reason its horizontal extension must be small
(i.e., N� = o(L)) and its vertical stretches should be long with alternating signs. In E , in turn,
a typical trajectory is expected to be composed of O(L) vertical stretches of finite length
(which is also what is expected at β = 0).
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Let us now briefly explain (with three simple observations) why the free energy f (β, δ)

is equal to β in C. First, f (β, δ) ≥ β for every (δ, β) ∈ Q. This inequality derives from
restricting the computation of Z+L,β,δ to a unique trajectory �̃ ∈ L√

L,L
given by

(2.5) �̃i = (−1)i−1(
√

L− 1) for every i ∈ {1, . . . ,
√

L},
(we assume

√
L ∈N for conciseness) so that H(�̃)= β(

√
L−1)2+δ(

√
L−1). Second, those

trajectories in �L that are performing a self-touching saturation are not many and therefore
they do not carry any entropy. Third, we mentioned above that such saturated trajectories are
made of o(L) stretches and a trajectory may touch the hard-wall at most once per vertical
stretch (recall Figure 1), hence their interactions with the wall cannot be numerous enough
to contribute to the free energy. These three points are sufficient to understand why the free
energy equals β in C and thus, it is natural to define the excess free energy of the system as

(2.6) f̃ (β, δ)= f (β, δ)− β,

which allows us to define the extended and the collapsed phases as

C := {
(β, δ) ∈Q : f̃ (β, δ)= 0

}
,

E :=Q \ C = {
(β, δ) ∈Q : f̃ (β, δ) > 0

}
.

(2.7)

Before stating Theorem 2.2 below, we need to settle some notation. We define for any β > 0
the following probability distribution on Z:

(2.8) Pβ(· = k)= e−
β
2 |k|

cβ

, cβ :=
∑
k∈Z

e−
β
2 |k| = 1+ e−β/2

1− e−β/2 .

For z ∈ Z, we denote by Pβ,z and Eβ,z the law and the associated expectation of a one-
dimensional random walk X := (Xi)i≥0 starting from z (i.e., Pβ,z(X0 = z) = 1) and such
that (Xi+1 − Xi)i≥0 is an i.i.d. sequence of random variables with law Pβ . Then, we let
hβ(δ) be the free energy of the wetting model that consists of the random walk X constrained
to remain nonnegative and to finish on the x-axis, and pinned at the origin by an energetic
factor δ, that is,

(2.9) hβ(δ)= lim
N→∞

1

N
log Eβ,0

[
eδ

∑N
i=1 1{Xi=0}1{X∈B

0,+
N }

]
,

where B
0,+
N is the set of nonnegative trajectories of length N ending at 0—more generally,

define for all y ≥ 0,

(2.10) B
y,+
N := {

(Xk)
N
k=1 ∈ Z

N ;XN = y,Xk ≥ 0∀1≤ k ≤N
}
.

An explicit formula for hβ(δ) is given in Appendix A (see (A.4)). We also define �β := cβe−β

which is decreasing in β , and βc > 0 the unique solution of the equation �β = 1.

THEOREM 2.2. The boundary between the collapsed and the extended phase can be
characterized explicitly, that is,

C = {
(β, δ) ∈Q : β ≥ βc, δ ≤ δc(β)

}
,

where, for every β ≥ βc, the quantity δc(β) is the unique solution in δ of

(2.11) log�β + hβ(δ)= 0,

which yields the following analytic expression:

(2.12) δc(β)= log
(sinh(β)+

√
sinh(β)2 + 1− eβ

1− e−β

)
.
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FIG. 2. Qualitative picture of the phase diagram and the geometry of the polymer in each phase. In this paper,
we rigorously determine the critical line δc(β) between the extended and collapsed phases, and we characterize
the surface transition critical line δ̃c(β). No analytic expression has been conjectured for the critical line δ̂c(β)

yet.

REMARK 2.3. Note that our formula for the critical curve in (2.12) was already conjec-
tured in [10], Equation 19, or [14], Equation 21, (both expressions coincide provided we set
κ = eδc(β) and τ = eβ ). In [10] and [14], the heuristics supporting this formula are based on
some additional assumption and on a computation of the grand canonical partition function
with the help of a transfer matrix.

2.2.1. Discussion. Let us further explain the phenomenon behind the existence of a sur-
face transition inside C that physicists have conjectured (see, e.g., [21], Figure 2). As men-
tioned above, a typical trajectory in the collapsed phase looks like a globule delimited by a
lower envelope and an upper envelope (see their rigorous definition in (3.20)). For L ∈ N,
β > βc and δ < δc(β), we prove in Section 4.2 that the lower envelope of a trajectory sam-
pled from Pβ,δ

L behaves roughly as a random walk of length O(
√

L), constrained to remain
nonnegative, and pinned at the x-axis (hard wall) with intensity δ. This leaves us with a
wetting model whose critical point δ̃c(β) can be explicitly computed, see (3.7) (and it sat-
isfies δ̃c(β) < δc(β)). Thus, when δ ≤ δ̃c(β) the lower-envelope touches the hard-wall only
o(
√

L) times, whereas when δ > δ̃c(β) it remains localized along the hard wall and touches
it O(

√
L) times. As a consequence, this wetting transition of the lower envelope is not en-

coded in the excess free energy f̃ (β, δ) (which remains equal to 0 in C) simply because the
number of contacts between the polymer (or equivalently its lower envelope) and the hard-
wall is at most O(

√
L). To be more specific, we claim in Theorem 3.2 below that, in the

exponential growth rate of the partition function (for the single-bead model, see Section 3.2),
δ ∈ (̃δc(β), δc(β)) only contributes to the surface order term. We further discuss the behavior
of a typical lower envelope in C below the statement of Theorem 3.2.

In order to display a qualitative picture of the phase diagram (see Figure 2), let us end
this discussion with a few words about the extended regime E , where a typical trajectory
of length L is expected to have an horizontal extension of order L. Physicists (see [10] or
[14], Figure 2) have conjectured that another critical curve δ̂c : [0, βc]→R

+ divides E into a
Desorbed-Extended phase denoted by DE and an Adsorbed-Extended phase denoted by AE
but there is so far no guess for what the value of δ̂c(β) could be.

3. Inside the collapsed phase: Restriction to the single-bead model. Asymptotics of
the partition functions.

3.1. Bead decomposition of a trajectory. A trajectory of �+L can be decomposed into a
collection of sub-trajectories called beads. A bead is a succession of nonzero vertical stretches
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FIG. 3. Decomposition of a trajectory into a succession of seven beads. For all � ∈�+L and 1≤ i ≤N�, a new
bead starts at the ith vertical stretch if and only if �i−1�i ≥ 0 (where we recall �0 = �N�+1 = 0).

with alternating signs, which ends when two consecutive stretches have the same orientation,
or when a stretch has length zero (see Figure 3). To be more specific, we consider � ∈�+L and
we recall that N� is its horizontal extension and that by convention �0 = �N�+1 = 0. Then, we
set x0 = 0 and for j ∈N such that xj−1 < N� we set

xj = inf{i ≥ xj−1 + 1 : li ∧̃ li+1 = 0},
so that xj is the index of the last vertical stretch composing the j th bead of �. Finally, we let
n(�) be the number of beads in �, in particular it satisfies xn(�) =N�. Thus, we can decompose
any trajectory � ∈ �L into a succession of beads denoted by Bj with j ∈ {1, . . . , n(�)} as
follows:

(3.1) �=
n(�)⊙
j=1

Bj :=
n(�)⊙
j=1

(�xj−1+1, . . . , �xj
),

where  denotes the concatenation.
A key issue concerning the collapsed phase of our model consists in showing that a typical

trajectory contains a unique macroscopic bead outside which very few monomers are laying.
Such result was derived for IPDSAW in [4] and recently improved in [20]. Its proof requires
some sharp asymptotics of the partition function restricted to beads. Those estimates are a
lot more technical in the model with a hard wall, since the shape of a bead strongly depends
on its position with respect to the wall (i.e., its starting and ending heights). In the present
paper, we consider the model restricted to describe a single-bead which begins and ends at
the wall, see Section 3.2 below for a definition. Not only this restriction makes the model
more tractable, we also conjecture that the multiple-bead model, inside its collapsed phase,
describes a unique macroscopic bead of the same nature as the one studied in this paper, that
is, beginning and ending in the vicinity of the wall.

3.2. Single-bead restriction of the model. Let L ∈N, and define �bead
L the subset of �+L

gathering those trajectories � constrained to form only one “bead”—all its stretches are of
nonzero length and alternate orientations—and to come back to the wall with its last stretch
(in particular its horizontal extension N� must be even). That is,

(3.2) �bead
L := ⋃

N≥1

Lbead
N,L :=

⋃
N≥1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(�i)

2N
i=1 ∈ Z

2N ;
2N∑
i=1

|�i | = L− 2N,

2N∑
i=1

�i = 0,

k∑
i=1

�i ≥ 0,∀k ≤ 2N,�i�i+1 < 0,∀1≤ i < 2N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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The partition function restricted to such trajectories becomes

(3.3) Zbead
L,β,δ :=

L/2∑
N=1

∑
�∈Lbead

N,L

�0=�2N+1=0

eH(�),

(recall that �0 = �2N+1 = 0 for notational convenience). We recall (2.3) and denote by Pbead
L,β,δ

the law Pβ,δ
L conditioned on � ∈�bead

L , that is,

(3.4) Pbead
L,β,δ(�) := Pβ,δ

L

(
�|� ∈�bead

L

)= eH(�)

Zbead
L,β,δ

, � ∈�bead
L .

3.3. Surface transition: Asymptotics of the single-bead partition function inside the col-
lapsed phase. The single-bead model undergoes the same phase transition as the full model,
albeit its critical curve differs slightly. Let us define f bead and f̃ bead respectively, the free en-
ergy and excess free energy of the single-bead model,

f bead(β, δ) := lim
L→∞ logZbead

L,β,δ, and f̃ bead(β, δ) := f bead(β, δ)− β.

Since �̃ forms a single bead (recall (2.5)), it follows that f̃ bead(β, δ)≥ 0 for all (β, δ) ∈Q.

PROPOSITION 3.1. For the single-bead model, we have

Cbead := {
(β, δ) ∈Q : f̃ bead(β, δ)= 0

}= {
(β, δ) ∈Q : β ≥ βc, δ ≤ δbead

c (β)
}
,(3.5)

where, for every β ≥ βc, the quantity δbead
c (β) is the unique solution in δ of

(3.6) 2 log�β + hβ(δ)= 0.

Notice that an analytic expression of δbead
c (β) can be derived from (3.6) and (A.4), simi-

larly to (2.12) in Theorem 2.2. Let us now focus on the collapsed phase of the single-bead
model. The surface transition occurs along a curve denoted by δ̃c : [βc,∞) �→ R

+ where
δ̃c(β) turns out to be the critical point of the wetting model introduced in (2.9), that is for
every β ≥ βc,

(3.7) δ̃c(β) := inf
{
δ ≥ 0 : hβ(δ) > 0

}=− log
(
1− e−β/2).

The second identity in (3.7) is proven in Proposition A.1. Definitions (3.6) and (3.7) ensure
us that δ̃c(β) ≤ δc(β) ≤ δbead

c (β) for β ≥ βc: thus, the curve δ̃c : [βc,∞) �→ R
+ lies in both

C and Cbead. We claim in Theorem 3.2 below that the surface order term in the exponential
development of Zbead

L,β,δ loses its analyticity along that curve.
At this stage, we divide the collapsed phase Cbead into a desorbed collapsed phase DC and

an adsorbed collapsed phase AC defined as

(3.8)
DC := {

(β, δ) ∈Q : β ≥ βc, δ ≤ δ̃c(β)
}
,

AC := {
(β, δ) ∈Q : β ≥ βc, δ̃c(β)≤ δ ≤ δbead

c (β)
}
,

where we dropped the subscript “bead” to lighten notation. To fully state Theorem 3.2, we
need to introduce some definitions. Let L be the logarithmic moment generating function of
the distribution Pβ (recall (2.8)), that is for any |h|< β/2,

(3.9) L(h) := log Eβ

[
ehX1

]
,
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and for every h= (h0, h1) ∈Dβ := {(h0, h1) ∈R
2, |h1|< β/2, |h0 + h1|< β/2}, define

(3.10) L	(h) :=
∫ 1

0
L(h0x + h1) dx,

which is strictly convex on Dβ . In [4], Lemma 5.3, it is proven that h ∈ Dβ �→ ∇L	(h) =
(∂h0L	, ∂h1L	)(h) is a C1-diffeomorphism from Dβ to R

2, so let h̃ :R2 →Dβ be its inverse
and from now on we note h̃

·,· := h̃(·, ·) to tighten notation.
Define g :R2 →R the Legendre transform of L	, that is,

(3.11) g(q,p) := h̃
q,p · (q,p)−L	

(
h̃

q,p)
.

Since L	 is convex, g is convex as well (see [28], Theorem 12.2). It is also nonnegative and
a straightforward differentiation ensures us that

(3.12) ∇g(q,p) := (∂qg, ∂pg)(q,p)= h̃
q,p

,

which yields that g is C2 and strictly convex. With those notations at hand, define

ϕ(β,δ)(a) : = a

(
2 log�β + hβ(δ)− g

(
1

2a2 ,0
))

, a ∈ (0,∞).(3.13)

For β > βc and δ < δbead
c (β), the quantity 2 log�β + hβ(δ) is negative. Therefore, ϕ(β,δ) is

negative on (0,∞) and its first two derivatives are computed as

ϕ′(β,δ)(a)= 2 log�β + hβ(δ)− g

(
1

2a2 ,0
)
+ 1

a2 ∂qg

(
1

2a2 ,0
)
,

ϕ′′(β,δ)(a)=− 1

a3 ∂qg

(
1

2a2 ,0
)
− 1

a5 ∂2
qg

(
1

2a2 ,0
)
.

At this stage, the strict convexity of g combined with the fact that ∇g(0,0) = (0,0) (by
(3.12)) implies that ϕ(β,δ) is strictly concave (since ϕ′′(β,δ) < 0 on (0,∞)) and that ϕ′(β,δ)(a) <

0 for a large enough. It remains to write

(3.14) ϕ′(a)= 2 log�β + hβ(δ)+ 1

2a2 h̃

1
2a2 ,0

0 +L	

(̃
h

1
2a2 ,0)

,

and to note that lima↘0 h̃

1
2a2 ,0

0 = β
2 > 0 and that L	(̃h

1
2a2 ,0

)≥ 0; hence ϕ′(a) > 0 for a suffi-
ciently small. This proves that sup(0,∞) ϕ = ϕ(ã) for some ã = ã(β, δ) ∈ (0,∞).

Finally, set �(β, δ) := ϕ(β,δ)(ã(β, δ)), let σ 2
β be the variance of X1 under Pβ , and recall

(0.2) for the definition of �. Recall also (3.6) and (3.7) for the definitions of δbead
c (β) and

δ̃c(β), respectively. We now claim our main result.

THEOREM 3.2. Let β > βc.

(i) For δ ∈ (̃δc(β), δbead
c (β)), then

(3.15) Zbead
L,β,δ �

1

L3/4 eβL+�(β,δ)
√

L.

(ii) For δ ∈ (0, δ̃c(β)] and ε > 0, there exist C > 0 and L0 ∈N such that for L≥ L0,

(3.16) eβL+�(β,0)
√

L+(�(β)−ε)L1/6 ≤Zbead
L,β,δ ≤

C

L3/4 eβL+�(β,0)
√

L.

(iii) For δ = 0, then

(3.17) Zbead
L,β,δ = eβL+�(β,0)

√
L+�(β)L1/6(1+o(1)), as L→∞,
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where

�(β) := −|a1|
[ ã(β,0)σ 2

β

2
h̃0

(
1

2ã2
(β,0)

,0
)2]1/3

,

and a1 denotes the first zero (in absolute value) of the Airy function.

These estimate allow us to derive some properties of typical trajectories under the polymer
measure, most notably regarding the number of contacts with the hard wall in the collapsed
phase.

COROLLARY 3.3. Let β > βc.

(i) The function δ �→�(β, δ) is C1 on (̃δc(β), δbead
c (β)). For δ ∈ (̃δc(β), δbead

c (β)) and for
any ε > 0 we have

(3.18) lim
L→∞Pbead

L,β,δ

(
N�∑
k=1

1{∑k
i=1 �i=0} ∈

[
∂δ�(β, δ)− ε, ∂δ�(β, δ)+ ε

]√
L

)
= 1.

(ii) For δ ∈ [0, δ̃c(β)), there exist some K > 0 (which only depends on β) such that

(3.19) lim
L→∞Pbead

L,β,δ

(
N�∑
k=1

1{∑k
i=1 �i=0} ≤KL1/6

)
= 1.

REMARK 3.4. • The surface transition occurring along the curve {(β, δ̃c(β)), β > βc} is
proven by Theorem 3.2(i)–(ii) (and confirmed by Corollary 3.3). Indeed, δ > δ̃c(β) implies
that hβ(δ) > hβ(0) = 0, hence ϕ(β,δ)(a) > ϕ(β,0)(a) for a ∈ (0,∞), and �(β, δ) > �(β,0)

(whereas hβ(δ)= 0 for all δ ≤ δ̃c(β)).
• In Theorem 3.2(ii), we conjecture that the upper bound is not optimal, and that (iii)

should apply at least for every δ < δ̃c(β). Similarly, for Corollary 3.3(ii), we expect the typical
number of contacts with the hard wall to be of smaller order than L1/6.
• In Theorem 3.2(iii), obtaining �(β) requires to compute the Laplace transform of the

area enclosed by a Brownian meander of length T . The first zero of the Airy function a1
appears in the leading order of such Laplace transform as T →∞ (see Section 4.4).

3.3.1. Discussion. Let us give some insights into Theorem 3.2. For any trajectory � ∈
�bead

L forming a single bead, we define its lower envelope I := (Ii)
N�/2
i=0 and upper envelope

S := (Si)
N�/2+1
i=0 as follow:

Sk =
2k−1∑
i=1

�i, k ∈
{

1, . . . ,
N�

2
+ 1

}
,(3.20)

Ik =
2k∑
i=1

�i, k ∈
{

1, . . . ,
N�

2

}
,

and S0 = I0 = 0. The single-bead constraint ensures that S (resp. I ) describes the topmost
(resp. bottommost) layer of the polymer (see Figure 4).

In Section 4.1 below we show that, under the polymer measure, the envelopes I and S of a
given single-bead configuration may be sampled as trajectories of nonnegative random walk
bridges that are coupled via geometric constraints. In Section 4.2 we break that geometric
coupling and integrate over S so that I can be investigated on its own (see (4.10)). However,
this comes with a cost (see Proposition 4.2 below), the law of I being perturbed by:
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FIG. 4. Representation of a single-bead trajectory, with its upper envelope (in red) and its lower envelope (in
green) respectively described by the sequences S and I .

1. a wetting term δ
∑N

k=1 1{Ik=0} which comes from the fact that the polymer (or equiv-
alently its lower envelope) is adsorbed along the hard wall,

2. a pre-wetting term proportional to −AN(I)/N where AN(I) is the area below I (see
(4.6)). The latter penalization comes from the fact that the upper envelope S must sweep an
abnormally large area, that is, AN(S) = AN(I) + qN2 with q > 0. Therefore, S, which is
already in a large deviation regime, pushes down the lower envelope I so as to keep AN(I)

small.

The influence of a pre-wetting term on a 1+ 1-dimensional random walk constrained to
remain positive has already been studied in [13] and [15] (see also [16] for a review). Among
physical motivations is, for example, the study of a liquid-gas interface when a thermody-
namically stable gas is in contact with a substrate (hard-wall) that has a strong preference for
the liquid phase, with the temperature decreasing to the liquid/gas critical point. From this
point of view, the present paper displays a new example of a physical object (i.e., the lower
envelope of a collapsed homopolymer interacting with a hard wall) associated with a model
for which pre-wetting appears naturally.

As stated in Theorem 3.2, the pre-wetting term does not have an influence on the lower-
envelope inside AC since the pinning term is strong enough to keep the lower envelope at
finite distance from the hard-wall. Inside DC, in turn the pre-wetting term should dominate
and we expect that [13], Theorem 1.2, also applies here, implying that I has fluctuations of
order L1/6 (its length being

√
L).

3.4. Open problems. From a mathematical point of view, there are still many issues that
remain to be settled concerning the present model. Let us list a few here.

1. Consider the multiple-bead model (defined in (2.1)–(2.4)) and prove that, inside its
collapsed phase C, it undergoes the same surface transition as the single-bead model. We
conjecture that it takes place along the very same critical curve β �→ δ̃c(β) than in the single-
bead model (even though the phases C and Cbead differ slightly). However, this is actually a
very intricate matter to investigate, since the bead decomposition requires us to consider the
heights of starting and ending points of each bead in addition to their length. Moreover, our
estimates for the single-bead model rely noticeably on the observation that the area enclosed
by the lower envelope is not too large (AN(I) = O(N3/2)), since the bead is close to the
wall. This observation fails for beads away from the wall, for instance when the height of
their starting and/or ending point are of order N . For such beads the pressure applied by
the upper envelope should push the lower envelope from at most standard fluctuations into a
large deviation trajectory (around a convex profile). Furthermore, the interaction between the
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wall and the lower envelope seems very intricate to study, even regarding the critical value
of the adsorption transition. Thus, the variational problem (3.13) for those beads—hence the
surface term in the logarithmic development of their partition function—should differ from
beads close to the wall (even though trajectories involving faraway beads are expected to be
unlikely in the collapsed multiple-bead model).

2. For the multiple-bead model again, prove that a typical trajectory is made of a unique
macroscopic bead, and give a bound on the number of monomers that may lay outside this
bead. A similar result was proven in [4], Theorem C, and [20] for the model without wall,
and comforts us in the idea that, in the Collapsed phase, the single-bead model encapsulates
quite accurately the behavior of its multiple-bead counterpart.

3. Consider a random walk (Xi)
N
i=0 of law Pβ,0 (recall (2.8)) constrained to remain

nonnegative and perturbed by both a wetting and a pre-wetting terms of parameter δ and γ

respectively, that is,

(3.21) Eβ,0
[
eδ

∑N
i=1 1{Ik=0}1{I∈B

0,+
N }e

− γ
N

AN(X)].
Display sharp asymptotics for the partition function in (3.21) when δ is not larger than the
critical point of the pure wetting model (i.e., δ ≤ δ̃c(β)). Such estimates would be the key to
improve Theorem 3.2 and Corollary 3.3 in DC. Note that a related model has been considered
in the physics literature in [1] to investigate a system where two phases A and B are coexisting
on top of a horizontal hard wall. Depending on the chemical affinities between phase A and
phase B on the one hand and between the wall and the phases A and B on the other hand, a
film of solvent B may appear between the wall and phase A. Among other results, the typical
width of such film and the correlation lengths in the system are derived by using spectral
tools.

4. Provide a characterization of the critical curve dividing E into an Adsorbed-Extended
phase and a Desorbed-Extended phase. In the Extended regime, the bead decomposition and
upper/lower envelopes description are far less efficient, so a whole different approach may be
needed.

4. Proof of Theorem 3.2. We divide the proof of Theorem 3.2 into six steps. First,
we adapt the random-walk representation of IPDSAW initially introduced in [23] to the
present single-bead model. We derive a probabilistic representation of the partition function
by rewriting, for every N ≤ L/2, the contribution to the partition function of those trajecto-
ries made of 2N stretches, in terms of two auxiliary random walks S and I . One particularity
comes from the fact that I and S are coupled since the area enclosed in-between S and I

is imposed by the length of the polymer, and another one comes from the single-bead con-
straint which implies that they cannot cross trajectories: hence S (resp. I ) plays the role of
the upper envelope (resp. lower envelope) of the polymer. The second step consists in break-
ing the geometric coupling between I and S. This is achieved by integrating over S, and
transforming the area constraint into an exponential perturbation of the law of I . In the third
and fourth steps, we estimate the partition function of the lower envelope I , in AC and DC
respectively. Finally, the fifth step proves that inside the collapsed phase, the horizontal ex-
tension of a typical trajectory is of order

√
L, and the sixth step collects all those estimates to

prove Theorem 3.2.

4.1. Step 1: Random-walk representation. The understanding of IPDSAW (recall Re-
mark 2.1) has recently been improved (see [5] for a review). The key tool was a new proba-
bilistic representation of the partition function based on an auxiliary random walk conditioned
to enclose a prescribed area. It turns out that this representation is of substantial help for the
present model as well but under a different form. This is the object of the present step.
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Let us first provide a probabilistic description of the single-bead partition function Zbead
L,β,δ .

We recall (2.2) and (3.3) and we observe that

(4.1) x ∧̃y = |x| + |y| − |x + y|
2

, x, y ∈ Z.

Hence the single-bead partition function can be written as

(4.2) Zbead
L,β,δ = eβL

L/2∑
N=1

e−2βN
∑

�∈Lbead
N,L

�0=�2N+1=0

e−
β
2
∑2N

i=0 |�i+�i+1|e
δ
∑2N

k=1 1{∑k
i=1 �i=0} .

At this stage, we recall (2.8) and we consider two independent random walks S := (Si)i≥0
and I := (Ii)i≥0 of law Pβ,0. We notice that for every � ∈ Lbead

N,L (with �0 = �2N+1 = 0) the
first factor in the second sum in (4.2) satisfies

(4.3)

e−
β
2
∑2N

i=0 |�i+�i+1|

= c2N+1
β Pβ,0

(
Sk =

2k−1∑
i=0

�i,∀k ≤N + 1

)
Pβ,0

(
Ik =

2k∑
i=0

�i,∀k ≤N

)
.

Let us introduce a one-to-one correspondence between trajectories (�i)
2N+1
i=0 ∈ Z

2N+2 with
�0 = �2N+1 = 0, and (Si)

N+1
i=0 ∈ Z

N+2, (Ii)
N
i=0 ∈ Z

N+1 with S0 = I0 = 0 and SN+1 = IN , by
letting Sk =∑2k−1

i=0 �i , ∀1≤ k ≤N + 1 and Ik =∑2k
i=0 �i , ∀1≤ k ≤N . Then, constraints on

� ∈ Lbead
N,L can be transcribed to S and I (recall (3.2)). Indeed,

∑2N
i=1 �i = 0 is equivalent to

SN+1 = IN = 0, and
∑k

i=1 �i ≥ 0, ∀k ≤ 2N is equivalent to Si ≥ 0, ∀i ≤ N + 1 and Ii ≥ 0,
∀i ≤N . Besides, we can write

(4.4)
2N∑
i=1

|�i | =
N∑

k=1

|Ik − Sk| +
N+1∑
k=1

|Sk − Ik−1| =:G(S, I),

which is the “geometric area” between S and I , and it is constrained to be equal to L− 2N

in Lbead
N,L . Finally, �i�i+1 < 0, ∀1≤ i < 2N is equivalent to S � I where we define

(4.5) {S � I } := {
Sk > max(Ik, Ik−1),∀1≤ k ≤N

}
.

In particular this means that in the single-bead model, S remains above I (thereby we respec-
tively call S and I the upper and lower envelopes of the polymer—recall Figure 4), and it
implies that we can rewrite the geometric area G(S, I): defining the signed area as

(4.6) An(X) :=
n∑

i=0

Xn,

for any n ∈ N and (Xk)
n
k=0 ∈ Z

n+1, we then have that {S � I } and SN+1 = IN = 0 imply
G(S, I)= 2(AN+1(S)−AN(I)).

Going back to (4.2) and plugging (4.3) in, those observations prove that we can rewrite the
partition function as follows. Let Pβ,x denote the law of a random walk on Z starting from x

with increments distributed as Pβ (henceforward, we omit the x-dependence in Pβ,x when x

is clear from context). Recall that �β = cβe−β , and B
0,+
N is defined in (2.10).

PROPOSITION 4.1. For β > 0, δ ≥ 0 and L≥ 1,

(4.7) Z̃bead
L,β,δ :=

1

cβeβL
Zbead

L,β,δ =
L/2∑
N=1

(�β)2NDbead
N,qL

N

,
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with qL
N := (L− 2N)/2N2, and for q ∈ (0,∞)∩ N

2N2 ,

(4.8) Dbead
N,q := Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{S∈B

0,+
N+1,I∈B

0,+
N }1{S�I }1{AN+1(S)=AN(I)+qN2}

]
,

where S, I are two independent random walks distributed as Pβ,0.

Our aim is to provide sharp estimates on the partition function Zbead
L,β,δ . To that purpose, we

need to estimate Dbead
N,q uniformly in q ∈ [q1, q2] ∩ 1

2N2N for any 0 < q1 < q2 fixed.

4.2. Step 2: Integrating over S in Dbead
N,q . With Proposition 4.2 below, we show that the

geometric constraint imposed to I and S can be relaxed provided we introduce an exponential
perturbation to the law of I , thus breaking the coupling between I and S.

Recall the definition of g : R2 → R
+ the Legendre transform of L	 in (3.11) that is C2,

strictly convex and satisfies (3.12). We claim below that g is also the rate function of a large
deviation principle associated to the couple 	N := (AN(X)/N,XN) under Pβ (see the proof
of Proposition 4.3).

PROPOSITION 4.2. Fix some q2 > q1 > 0. Then

(4.9) Dbead
N,q �

e−Ng(q,0)

N2 Ebead
N,q ,

uniformly in q ∈ [q1, q2] ∩ 1
2N2N, where

(4.10) Ebead
N,q := Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }e

−∂qg(q,0)
AN (I)

N
]
.

Outline of the proof of Proposition 4.2. Obtaining an upper bound on Dbead
N,q is rather

straightforward: we simply remove the events {S � I } and {Si ≥ 0,∀0 ≤ i ≤ N + 1} from
the definition of Dbead

N,q and then apply large deviation estimate for the signed area AN+1(S)

of the upper envelope. The proof of the lower bound is more involved and consists of the
following.

1. Getting rid of the event {S � I } by first introducing a stronger constraint, that is, S

(resp. I ) remains above (resp. below) some deterministic curves.
2. Conditioning on I that remains below the deterministic curve introduced in (a) and

integrating over S. Then, with the help of large deviation estimates for random walks en-
closing very large area, proving that the events {S ∈ B

0,+
N+1} and {AN+1(S)= qN2 +AN(I)}

have a probability 1
N2 e−Ng(q,0)e−∂qg(q,0)

AN (I)

N and that the cost for S to remain above the
deterministic curve introduced in (a) is bounded from below by a constant,

3. Getting rid of the additional constraint on I introduced in (a) with an FKG inequality,
by observing that the random walk I whose law is penalized exponentially by − 1

N
AN(I)

typically remains below its unpenalized counterpart.

Proof of the lower bound in (4.9).

Integrating on the upper envelope S. To begin with, we constrain the upper and lower
envelopes to remain respectively above and below some fixed curves. In particular this allows
us to handle the condition S � I . Define f (t) := γ (t ∧ (1− t)), t ∈ [0,1], and

(4.11)

f̃S(k) := (N + 1)f

(
k

N + 1

)
+KS, ∀1≤ k ≤N,

f̃I (k) :=Nf

(
k

N

)
+KI , ∀1≤ k ≤N − 1,
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FIG. 5. Representation of the constraints on S, I , for N large. The piecewise linear curves f̃S and f̃I are above
the wall, reaching a height of order N in the middle and bounded at both ends. S is constrained to remain above
f̃S , and I below f̃I .

where γ,KS,KI > 0 are constants. If we constrain Sk , 1≤ k ≤N (resp. Ik , 1≤ k ≤N − 1)
to remain above f̃S(k) (resp. below f̃I (k)), and provided that KS−KI ≥ 1+γ , then we have

(4.12) {S � I } ⊃
⎧⎨⎩Sk ≥ f̃S(k),∀1≤ k ≤N;

Ik ≤ f̃I (k),∀1≤ k ≤N − 1

⎫⎬⎭ .

Geometrically, f̃·(k) is a piecewise linear curve above the wall of order N when k = N/2,
and constant at its ends. The constants KS , KI are only there for technical purposes and
are mostly irrelevant when N is large (see Figure 5). More precisely, we fix γ such that
Proposition 4.3 below applies (for any KS > 0), then we fix KI when applying Lemma 4.5,
and we finally fix KS > KI such that (4.12) holds.

We also add the constraint {AN(I)≤ CAN3/2}, where CA > 0 is some constant which will
also be fixed when applying Lemma 4.5 below. Let us condition Dbead

N,q over the trajectory I

(recall (4.8)), so that we separate the constraints on I and S and we obtain the lower bound

(4.13) Dbead
N,q ≥ Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }1{AN(I)≤CAN3/2}1{Ik≤f̃I (k),∀1≤k<N}D̂bead

N,q (I )
]
,

with:

(4.14) D̂bead
N,q (I ) := Eβ,0[1{SN+1=0}1{AN+1(S)=AN(I)+qN2}1{Sk≥f̃S(k),∀1≤k<N+1}|I ].

Let us fix I = (Ik)
N
k=1 which satisfies all constraints in (4.13). Proposition 4.3 below allows

us to estimate D̂bead
N,q (I ) up to uniform constant factors. We postpone the proof to Section 6.3.

PROPOSITION 4.3. Let ε > 0 and q1 < q2, p1 < p2 ∈ R. There exists γ > 0 such that
for all KS > 0, there exist C2 > C1 > 0 and N0 ∈N such that for every N ≥N0, one has

(4.15)

C1

N2 e−Ng(q,p) ≤ Eβ,0[1{XN=pN,AN(X)=qN2}1{Xk≥f̃ (k),∀1≤k<N}]

≤ Eβ,0[1{XN=pN,AN(X)=qN2}] ≤
C2

N2 e−Ng(q,p),

where we define f̃ (k) := Nf ( k
N

) + kp + KS , and these bounds hold uniformly in q ∈
[q1, q2] ∩ Z

2N2 , p ∈ [p1,p2] ∩ Z

N
satisfying p ≤ 2q − ε.

REMARK 4.4.

(i) Although we only use Proposition 4.3 with p = 0, we prove it in the general case
(p �= 0) because such estimates will be useful when studying the model without the single-
bead restriction.
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(ii) The assumption q ≥ p+ε
2 is required to ensure that the area enclosed in between the

straight line from (0,0) to (N,pN) and a random walk trajectory from (0,0) to (N,pN)

satisfying AN(X)= qN2 remains large, that is, larger than εN2/2. Such random walk trajec-
tories are of large deviation type and concentrate on their mean profile which is a q-dependent
concave curve above the straight line from (0,0) to (N,pN) and even above f̃ provided γ

is chosen small enough. Notice that the assumption q = p
2 would yield a trajectory with a

linear mean profile from (0,0) to (N,pN), and a lower value of q would yield a convex
mean profile (below the linear trajectory).

(iii) If we remove the constraint {Xk ≥ f̃ (k),∀1 ≤ k < N} from (4.15), the proof of
Proposition 4.3 was known from [7], eq. (4.14) & Theorem 4.2, for random walks on Z

whose increments have finite small exponential moments. In this case, the method consists in
tilting the law of the N first increments in such a way that the event (AN,XN)= (qN2,pN)

becomes typical and to apply subsequently a Gnedenko type central limit Theorem. In [4],
Proposition 2.5, the case p = 0 with the constraint {Xk > 0,∀1≤ k < N} was considered and
a lower bound C/Nκe−Ng(q,p) was obtained with some κ > 2. Proposition 4.3 substantially
reinforces this latter lower bound by proving that the constraint {Xk ≥ f̃ (k),∀1 ≤ k < N}
only costs up to a constant factor. Heuristically, this comes from the fact that after tilting the
increments of the random walk in such a way that their expected profile matches the prescrip-
tion (AN,XN)= (qN2,pN), the increments close to the origin (resp. close to the endpoint)
have a positive drift uniformly bounded from below by a positive constant (resp. a negative
drift bounded from above by a negative constant) and therefore the walk does not return to
the origin between time 1 and N − 1 with positive probability.

Recall (4.14), and let p′ = 0, q ′ := (qN2 + AN(I))/(N + 1)2. Under our assumptions,
there is a compact subset [q ′1, q ′2] ⊂ (0,∞) and N0 ∈ N such that q ′ ∈ [q ′1, q ′2] for all N ≥
N0, q ∈ [q1, q2] and I satisfying all constraints from (4.13) (recall that AN(I)=O(N3/2)).
Moreover, we have 0= p′ < q ′1/2, hence we can apply Proposition 4.3 to D̂bead

N,q (I ), and we
obtain the uniform bound for N ≥N0,

(4.16) D̂bead
N,q (I )≥ C3

N2 e−Ng(q ′,0).

Now recall that g is C2 and convex, so there exists C3 > 0 such that

g
(
q ′,0

)≤ g(q,0)+ ∂qg(q,0)
(
q ′ − q

)+C3
(
q ′ − q

)2
,

uniformly in q ∈ [q1, q2] and q ′ ∈ [q ′1, q ′2]. Recall that AN(I)=O(N3/2), and notice q ′−q =
AN(I)

N2 +O(1/N). Thereby (4.16) becomes

(4.17) D̂bead
N,q (I )≥ C4

N2 e−Ng(q,0)−∂qg(q,0)
AN (I)

N ,

where C4 is uniform in q ∈ [q1, q2] ∩ N

2N2 and I . Plugging (4.17) into (4.13), we obtain

(4.18)
Dbead

N,q ≥
C4

N2 e−Ng(q,0)Eβ,0
[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }1{AN(I)≤CAN3/2}

× 1{Ik≤f̃I (k),∀1≤k<N}e−∂qg(q,0)
AN (I)

N
]
.

Recall that g is nonnegative, and let us point out that ∂qg(q,0)= h̃
q,0
0 > 0 for all q > 0 (recall

(3.12), and see [4] or Section 6.3, Rem. 5.5).
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Relaxing some constraints on the lower envelope I . Our goal now is to drop the events
{Ik ≤ f̃I (k),∀1≤ k < N} and {AN(I)≤ CAN3/2} in the right-hand side in (4.18) by paying
up to a constant factor uniform in N ≥ N0 and q ∈ [q1, q2]. To that aim, we use an FKG
inequality. Indeed, notice that the functions

x = (xk)
N
k=1 �−→ eδ

∑N
k=1 1{xk=0}e−∂qg(q,0)

AN (x)

N ,

and x �−→ 1{xk≤f̃I (k),∀1≤k<N}1{AN(x)≤CAN3/2},

are both bounded and nonincreasing on B
0,+
N , where we say that f : B0,+

N → R is nonin-

creasing if for all x, y ∈ B
0,+
N such that xk ≤ yk , ∀1≤ k ≤N , one has f (x)≥ f (y). Thereby

the FKG inequality claimed in Proposition B.1 yields that

(4.19)

Eβ,0
[
eδ

∑N
k=1 1{Xk=0}1{Xk≤f̃I (k),∀1≤k<N;AN(x)≤CAN3/2}e−∂qg(q,0)

AN (X)

N |X ∈ B
0,+
N

]
≥ Pβ,0

(
Xk ≤ f̃I (k),∀1≤ k < N;AN(X)≤ CAN3/2|X ∈ B

0,+
N

)
×Eβ,0

[
eδ

∑N
k=1 1{Xk=0}e−∂qg(q,0)

AN (X)

N |X ∈ B
0,+
N

]
.

Finally, the first factor of the right-hand side is bounded from below by some constant (close
to 1) by the following lemma, which is proven in Section 6.1.

LEMMA 4.5. Let ε, γ > 0. There exist CA,KI > 0 and N0 ∈N such that

(4.20) Pβ,0
(
Xk ≤ f̃I (k),∀1≤ k < N;AN(X)≤ CAN3/2|X ∈ B

0,+
N

)≥ 1− ε,

for all N ≥N0.

By recollecting (4.18) and (4.19), and provided that CA, KI are sufficiently large to apply
Lemma 4.5, we conclude that for every N ≥N0 and every q ∈ [q1, q2] ∩ N

2N2 we have

(4.21) Dbead
N,q ≥

C5

N2 e−Ng(q,0)Eβ,0
[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }e

−∂qg(q,0)
AN (I)

N
]
,

which completes the proof of the lower bound. �

Proof of the upper bound in (4.9). We recall (4.8) and we bound Dbead
N,q from above by re-

laxing partially the constraints on S-more precisely the constraints {S � I } and {Si ≥ 0,∀1≤
i ≤N}. Therefore,

(4.22)
Dbead

N,q ≤ Eβ,0
[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }1{SN+1=0}1{AN+1(S)=AN(I)+qN2}

]
,

= Eβ,0
[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N }D̃

bead
N,q (I )

]
.

with

D̃bead
N,q (I ) := Pβ,0

[
SN+1 = 0,AN+1(S)=AN(I)+ qN2|I ].

In order to get uniform bounds on D̃bead
N,q (I ) with Proposition 4.3, we need to drop those I

sweeping a too large area. To that aim, for any c > 0, we rewrite (4.22) as D̃bead
N,q ≤R1

N,q(c)+
R2

N,q(c) with

R1
N,q(c) := Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N ,AN(I)≤cN2}D̃

bead
N,q (I )

]
,

R2
N,q(c) := Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N ,AN(I)>cN2}D̃

bead
N,q (I )

]
,
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and we write the very crude bound

R2
N,q(c)≤ eδNPβ,0

[
AN(I) > cN2]≤ eδNPβ,0

[
max

1≤i≤N
Ii > cN

]

≤ eδNPβ,0

[
N∑

i=1

|Ii − Ii−1|> cN

]
.

(4.23)

Then, we set M := 1+max{g(q,0), q ∈ [q1, q2]} and we use the fact that (Ii − Ii−1)i≥1 are
i.i.d. with finite small exponential moments to conclude (via a Markov exponential inequality)
that there exists a cM,δ > 0 such that for every N ≥N0 and q ∈ [q1, q2] ∩ N

2N2 ,

(4.24) R2
N,q(cM,δ)≤ e−MN.

Let us now consider R1
N,q(cM,δ) and use Proposition 4.3 to assert that there exists C6 > 0

and N0 ∈N (depending on M) such that for every N ≥N0, q ∈ [q1, q2]∩ N

2N2 and I satisfying

AN(I)≤ cM,δN
2 we have

D̃bead
N,q (I )≤ C6

N2 e−Ng(q ′,0),

with q ′ = (qN2+AN(I))/(N+1)2. Recall that g is convex, therefore we can bound g(q ′,0)

from below with

g
(
q ′,0

)≥ g(q,0)+ ∂qg(q,0)
(
q ′ − q

)
.

Moreover q ′ − q = AN(I)

N2 +O(1/N), thus,

R1
N,q(cM,δ)≤ C7

N2 e−g(q,0)N

×Eβ,0
[
eδ

∑N
k=1 1{Ik=0}1{I∈B

0,+
N ,AN(I)≤cM,δN

2}e
−∂qg(q,0)

AN (I)

N
]

≤ C7

N2 e−g(q,0)NEbead
N,q ,

(4.25)

where we recall (4.10).
Our proof will be complete once we show that for N large enough and for every q ∈

[q1, q2] ∩ N

2N2 , the right-hand side in (4.24) (i.e., e−MN ) is not larger than the right-hand side
in (4.25). To that aim, we write the lower bound

(4.26)
Ebead

N,q ≥ Pβ,0
(
AN(I)≤ CAN3/2 | I ∈ B

0,+
N

)
× Pβ,0

(
I ∈ B

0,+
N

)
e−max{∂qg(q,0),q∈[q1,q2]}CA

√
N,

for any CA > 0, where we constrained the walk to have area at most CAN3/2. A direct con-
sequence of Lemma 4.5 is that there exist CA,C8 > 0 such that for N large enough,

Pβ,0
(
AN(I)≤ CAN3/2|I ∈ B

0,+
N

)≥C8,

(more generally this follows from an invariance principle on nonnegative random walk
bridges, see (6.2) below). The second factor in (4.26) is bounded from below by C9N

−3/2

for some C9 (see (6.1)). Recalling that q �→ ∂qg(q,0) is continuous on [a1, a2], we conclude
that there exists C10, c1 > 0 such that for N large enough and every q ∈ [q1, q2] ∩ N

2N2 , we
have

(4.27) Ebead
N,q ≥

C10

N3/2 e−c1
√

N.

Recalling that M = 1 + max{g(q,0), q ∈ [q1, q2]} > 0, it suffices to combine (4.24) with
(4.25) and (4.27) to complete the proof of the upper bound in (4.9). �
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4.3. Step 3: Area-penalized wetting model for δ > δ̃c(β). In this section, we give esti-
mates on Ebead

N,q when δ > δ̃c(β)—in particular in the phase AC. Notice that Ebead
N,q is the

partition function of a wetting model with an additional pre-wetting term. Let Z
β,δ
wet,N be the

standard wetting partition function (without pre-wetting, see (A.1)). Such wetting models
have already been studied extensively by mathematicians—we provide well-known results
on them in Proposition A.1. Recall that δ̃c(β)= inf{δ > 0, hβ(δ) > 0} is the critical point of

the wetting model Z
β,δ
wet,N , hβ(δ) is its free energy, and � is defined in (0.2).

PROPOSITION 4.6. Let q2 > q1 > 0, and assume δ > δ̃c(β). Then Ebead
N,q � ehβ(δ)N uni-

formly in q ∈ [q1, q2].

PROOF. The upper bound is a straightforward consequence of the inequality Ebead
N,q ≤

Z
β,δ
wet,N and Proposition A.1 (ii). For the lower bound, we first bound ∂qg(q,0) by some

c > 0 for all q ∈ [q1, q2] (recall that it is a continuous and positive function), then decompose
trajectories in Ebead

N,q into excursions:

(4.28) Ebead
N,q ≥

N∑
r=1

∑
1≤t1,...,tr≤N,
t1+···+tr=N

r∏
i=1

Kβ(ti)e
δEβ,0

[
e−c

Ati
(I )

N |τ = ti , Iti = 0
]
,

where we define τ = inf{t ≥ 1; It ≤ 0} and Kβ(t) = Pβ,0(τ = t, It = 0), t ≥ 1 as in Ap-
pendix A. Using Jensen’s inequality, we can claim that

(4.29) Eβ,0
[
e−c

At (I )
N |τ = t, It = 0

]≥ e−c 1
N

Eβ,0[At (I )|τ=t,It=0], t ∈N.

Moreover, by using the inequality Eβ,0(|At(I )|) ≤ Eβ,0(|I1|)∑t
j=1 j combined with (A.2)

we can state that there exists a c̄ > 0 such that

(4.30) Eβ,0
[
At(I )|τ = t, It = 0

]≤ Eβ,0
(∣∣At(I )

∣∣)Kβ(t)−1 ≤ c̄t7/2, t ∈N.

Using (4.28)–(4.30), we obtain that there exists a c1 > 0 such that

(4.31) Ebead
N,q ≥

N∑
r=1

∑
1≤t1,...,tr≤N,
t1+···+tr=N

r∏
i=1

Kβ(ti)e
δe−c1

t
7/2
i
N .

Since δ > δ̃c(β), equation (A.3) guarantees that

(4.32) Q∞(t) :=Kβ(t)eδe−hβ(δ)t , t ∈N,

is a probability distribution on N. We also define, for all N ∈N,

(4.33) QN(t) :=Kβ(t)eδe−hN te−
c1
N

t7/2
, t ∈N,

where hN is the unique solution of

(4.34)
∑
t≥1

Kβ(t)eδe−hN te−
c1
N

t7/2 = 1.

Notice that hN ≤ hβ(δ) and hN → hβ(δ) as N →∞. Plugging these notations into (4.31),
we have

(4.35) Ebead
N,q ≥ ehNNQN (N ∈ τ̃ ),

where τ̃ is a renewal process in N whose inter-arrival distribution is given by QN .
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LEMMA 4.7. There is C11 > 0 such that, for all N ∈N,

(4.36) 0≤ hβ(δ)− hN ≤ C11

N
.

PROOF. We already stated that hN ≤ hβ(δ) for all N ∈ N. Using that Q∞ and QN are
probability distributions on N, we write∑

t≥1

Kβ(t)eδe−hβ(δ)t (e(hβ(δ)−hN)t − 1
)=∑

t≥1

Kβ(t)eδe−hN t (1− e−
c1
N

t7/2)≥ 0.

We bound the left-hand side from below using e(hβ(δ)−hN)t−1≥ (hβ(δ)−hN)t ≥ hβ(δ)−hN

for all t ≥ 1 and (4.32), so

hβ(δ)− hN ≤
∑
t≥1

Kβ(t)eδe−hN t (1− e−
c1
N

t7/2)
.

Since limN→∞ hN = hβ(δ), we have some N0 ∈ N such that hN ≥ hβ(δ)/2 for all N ≥N0.

Moreover, 1− e− c
N

t7/2 ≤ c1
N

t7/2, so for all N ≥N0,

hβ(δ)− hN ≤ c1

N

∑
t≥1

Kβ(t)eδe−(hβ(δ)/2)t t7/2,

and that sum is finite, which concludes the proof. �

Applying this lemma to (4.35), we obtain

(4.37) Ebead
N,q ≥ C12e

hβ(δ)NQN (N ∈ τ),

and therefore the proof will be complete once we show that lim infN QN(N ∈ τ)) > 0. Ap-
plying the main theorem from [22], there is M a random variable with distribution Geom(b),
b ∈ (0,1), and a sequence Zi = C′ + ζi , i ≥ 1 where C′ > 0 and (ζi)i∈N are i.i.d. variables
with distribution Exp(a), a > 0, such that M and (Zi)i∈N are independent, and

(4.38)
∣∣∣∣QN(n ∈ τ)− 1

μN

∣∣∣∣≤ C13P

(
M∑
i=1

Zi > n

)
,

for all n ∈ N and N ∈ N, where μN := EQN
[τ1] ∈ (0,∞). The key feature here is that

C′,C13 > 0, a > 0 and b ∈ (0,1) can be taken uniformly in N ∈ N. We do not write the
details here as it suffices to check the proof in [22]—more precisely one has to use that
QN(t)≤ C14Q∞(t) uniformly in N, t ∈N (this follows from Lemma 4.7) in [22], (2.9), and
QN(t)≥ C15Q∞(t) uniformly in N ∈N and finitely many t ∈N in [22], (2.13).

In particular when n=N , the right-hand side in (4.38) decays to 0 as N →∞, so QN(N ∈
τ)− 1

μN
converges to 0 as N →∞. Finally, we note that limN→∞μN = μ∞ := EQ∞[τ1] ∈

(0,∞) (by dominated convergence theorem). Thus, QN(N ∈ τ) ≥ 1
2μ∞ for N sufficiently

large, and this concludes the proof of Proposition 4.6. �

4.4. Step 4: Area-penalized wetting model for δ ≤ δ̃c(β). Estimates of Ebead
N,q in the phase

DC are more involved than in AC. Actually we only manage to find a sharp asymptotic of
Ebead

N,q when δ = 0. To lighten upcoming notations, let us define for all γ > 0,

(4.39) EN(γ ) := Eβ,0
[
e−γ

AN (I)

N 1{I∈B
0,+
N }

]
.

Recall that σ 2
β is the variance of I1 under Pβ .
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For any T > 0 and y ≥ 0, let (My
s,T )s∈[0,T ] denote the Brownian meander on [0, T ] start-

ing from y—henceforth we denote its law with P and its expectation with E. When y > 0, it
has the same law as the Brownian motion starting from y and conditioned to remain positive
on [0, T ]. Define, for all γ > 0,

(4.40) J (γ ) := lim
T→∞

1

T
logE

[
e
−γ

∫ T
0 M0

s,T ds]=−2−1/3|a1|γ 2/3,

where a1 denotes the smallest zero (in absolute value) of the Airy function. More precisely,

one notices E[e−γ
∫ T

0 M0
s,T ds] = E[e−γ T 3/2 ∫ 1

0 M0
s,1 ds], and the latter expectation has been com-

puted analytically in [29] (see also [17], (209)), which leads to the second identity. We claim
the following.

PROPOSITION 4.8. One has

(4.41)
1

N1/3 logEN(γ ) −→
N→∞ J (σβγ ),

locally uniformly in γ ∈ (0,∞).

REMARK 4.9. In [15], Lemma 1 and Theorem 2 provide a result that is close in spirit
to our Proposition 4.8 but in a broader framework. To be more specific, the authors consider
a random walk X = (Xi)

N
i=0 on Z with i.i.d. increments that are symmetric with finite ex-

ponential moments. Let us denote by p the law of the random walk an by Ep its associated
expectation. For λ > 0 the following partition function is considered:

(4.42) ZN,+,λ(X)= Ep
[
e−

∑N
i=1 Vλ(Xi)1{X∈B

0,+
N }

]
,

where Vλ : [0,∞) �→ [0,∞) is a continuous increasing function satisfying Vλ(0) = 0 and
limx→∞Vλ(x) =∞. The free energy associated with the partition function in (4.42) is de-
noted by eλ. With [15], Lemma 1, the authors prove that eλ is bounded away from 0 and
∞ as λ↘ 0 and subsequently, with Theorem 2, they identify limλ↘0 eλ by using tools from
spectral theory. In that latter framework, our Proposition 4.8 would correspond to Vλ(x)= λx

in the case where λ decays with the system size, that is, λ= γ /N .
The proof of Lemma 1 in [15] is very different from that of Proposition 4.8, the common

point though being the decomposition of {0, . . . ,N} into blocks whose size are comparable
to the correlation length of the system (N2/3 here and H 2

λ the solution in H of H 2Vλ(H)= 1
in [15]). On such blocks, an invariance principle can be applied to the random walk rescaled
in time/space by N2/3 and N1/3 here and by H 2

λ and Hλ in [15].

PROOF. First, we claim that it suffices to prove the pointwise convergence. Indeed, one
notices that γ �→ J (σβγ ) is continuous, and γ �→ 1

N1/3 logEN(γ ) is nonincreasing for any
N ∈N. It is well known that those assumptions put together with the pointwise convergence
imply the locally uniform convergence; see, for example, [27], Proposition 2.1, for a proof.

Notice also that 1
σβ

I is a random walk on 1
σβ
Z with variance 1, and upcoming computations

still hold when replacing γ with σβγ . Hence, we can assume without loss generality that
σβ = 1.

Upper bound. Let N ∈ N and T > 0, and let us denote NT := �T N2/3�. Set also aN :=
�N/NT �. We decompose a trajectory contributing to EN(γ ) into aN blocks of length NT

and a remaining block of length at most NT . We apply Markov property at times jNT for
j ∈ {1, . . . , aN } and we bound the contribution of the very last block by 1 to obtain

(4.43) EN(γ )≤
(

sup
x∈N

Eβ,x

[
e−

γ
N

ANT
(I )1{I∈B+NT

}
])aN

,
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where for n ∈ N, B+n := {(Xk)
n
k=1 ∈ Z

n;Xk ≥ 0∀1≤ k ≤ n} and where, for x ∈ Z, we recall
the definitions of Pβ,x and Eβ,x from (2.8).

LEMMA 4.10. For α > 0 and m ∈N0,

x �→ Eβ,x

[
e−αAm(I)|I ∈ B+m

]
,

is nonincreasing on N0. This also holds when conditioning over B0,+
m instead of B+m .

We postpone the proof of this lemma to Section 6.2. Choosing α = γ /N and applying
1

N1/3 log to (4.43) (and because Pβ,x(B
+
m)≤ 1), we obtain

1

N1/3 logEN(γ )≤ aN

N1/3 log
(

sup
x∈N

Eβ,x

[
e−

γ
N

ANT
(I )|I ∈ B+NT

])
≤
(

1+ 1

NT

)
1

T
log Eβ,0

[
e−

γ
N

ANT
(I )|I ∈ B+NT

]
,

(4.44)

for all N , T . Moreover the process ( 1
N1/3 I�sN2/3�)s∈[0,T ] conditioned to remain nonnegative

converges weakly as N →∞ to the Brownian meander (M0
s,T )s∈[0,T ] in the set of cadlag

functions on [0, T ] endowed with the uniform convergence topology (see [2], Theorem 3.2),
and the swiped area is a continuous function of the trajectory. Thereby,

(4.45) lim
N→∞Eβ,0

[
e−

γ
N

ANT
(I )|I ∈ B+NT

]= E

[
exp

(
−γ

∫ T

0
M0

s,T ds

)]
,

for all γ > 0. Recollecting (4.44), we have for any fixed T > 0,

lim sup
N→∞

1

N1/3 logEN(γ )≤ 1

T
log

(
E

[
exp

(
−γ

∫ T

0
M0

s,T ds

)])
.

Choosing T > 0 arbitrarily large, we conclude

lim sup
N→∞

1

N1/3 logEN(γ )≤ J (γ ).

Lower bound. It remains to prove that

(4.46) lim inf
N→∞

1

N1/3 logEN(γ )≥ J (γ ).

Let us settle some notation, that is, for κ1 < κ2 ∈ R and N ∈ N we define Oκ1,κ2,N :=
[κ1N

1
3 , κ2N

1
3 ]. For � > 0, N,n ∈N and x, y ∈N0 we set

G
x,y
N,n := Eβ,x

[
e−

γ
N

An(I )1{I∈B
y,+
n }

]
,

and G̃x
N,�,n :=

∑
y∈O�/2,�,N

G
x,y
N,n.

(4.47)

Let also N ∈ N and T > 0, and define NT := �T N2/3� and aN := �(N − 2NT )/(NT + 2)�
(where aN ≥ 0 as soon as N ≥ 8T 3). We decompose a trajectory in EN(γ ) into aN + 2
blocks: the first block has length NT , the aN following blocks have length NT + 2, and the
final block has length ρNT for some ρ ∈ [1,2+ 1

NT
]. We restrict EN(γ ) to those trajectories

located inside O�/2,�,N at times NT and (j + 1)NT + 2j for every j ∈ {1, . . . , aN }. Then,
applying Markov property at those times we obtain

(4.48) EN(γ )≥ G̃0
N,�,NT

[ĜN,�,NT+2]aN inf
x∈O�/2,�,N

G
x,0
N,ρNT

,
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with

(4.49) ĜN,�,n := inf
x∈O�/2,�,N

G̃x
N,�,n.

We prove (4.46) subject to claims 1, 2, 3 and 4 below. Before stating those claims, we need
some additional notation. For � > 0, n ∈N and N ∈N, we set

U
j
N,�,n := Eβ,0

[
e−

γ
N

An(I )1{I∈B̃+
n,�N1/3 }1{In∈Õj

�,N }
]
, j ∈ {1,2,3},(4.50)

with

Õ1
�,N :=

(−�N1/3

2
,
−�N1/3

4

)
,

Õ2
�,N :=

[−�N1/3

4
,0
)
, and Õ3

�,N :=
[
0,

�N1/3

4

]
,

and where we introduce for κ ≥ 0 and n ∈N,

B̃+n,κ :=
{
(Xi)

n
i=1 ∈ Z

n;Xi ≥−κ

2
,∀1≤ i < n,Xn >−κ

2

}
.

Claim 1 handles the first and last factors in (4.48). Claim 2 combined with Claim 3 allows
us to get rid of the infimum in the definition of ĜN,�,n in (4.49) and replace it by U1

N,�,n +
U2

N,�,n. On this latter quantity one may apply an FKG inequality and get rid of the constraint
{In ∈O�/2,�,N } in ĜN,�,n. Claim 4 is used at the end of the proof to retrieve J (γ ).

CLAIM 1. For � > 0 and T > 0, one has

(4.51) lim
N→∞

1

N1/3 log G̃0
N,�,ρNT

= lim
N→∞

1

N1/3 log
(

inf
x∈O�/2,�,N

G
x,0
N,ρNT

)
= 0,

uniformly in ρ ∈ [1,3].

CLAIM 2. For � > 0 and N,n ∈N,

(4.52) ĜN,�,n ≥ exp
(
−γ�n

N2/3

)
min

{
U2

N,�,n,U
3
N,�,n

}
.

CLAIM 3. There exists a C > 0 such that for � > 0 and N,n ∈N,

U
j
N,�,n ≤ C exp

(
γ�n

N2/3

)
U

j+1
N,�,n+1, for j ∈ {1,2}.(4.53)

CLAIM 4. One has

(4.54) lim sup
�→0+

lim sup
T→∞

1

T
logE

[
e
−γ

∫ T
0 M�

s,T ds]≥ J (γ ).

We resume the proof of the lower bound. We observe that by constraining the last incre-
ment of the random walk I to be null in U2

N,�,n+1 we get the inequality

U2
N,�,n ≤ cβU2

N,�,n+1.(4.55)

Then, using Claim 3 for n= NT and j = 1 and using (4.55) for n= T N2/3, we obtain that
there exists a C1 > 0 such that for T ,� > 0 and N ∈N,

U1
N,�,NT

+U2
N,�,NT

≤ C1e
γ�T U2

N,�,NT+1.(4.56)
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Then, it suffices to apply, on the one hand, Claim 3 for j = 2 and n = NT + 1 to the right-
hand side in (4.56) and, on the other hand, (4.55) for n = NT + 1 to the right-hand side in
(4.56) to assert that there exists a C2 > 0 such that for T ,� > 0 and N ∈N,

(4.57) VNT
:=U1

N,�,NT
+U2

N,�,NT
≤ C2e

2γ�T min
{
U2

N,�,NT+2,U
3
N,�,NT+2

}
.

We note that VNT
may be rewritten under the form

VNT
= Eβ,0

[
e−

γ
N

ANT
(I )1{I∈B̃+

NT ,�N1/3 }1{INT
≤0}

]
(4.58)

= Pβ,0
(
I ∈ B̃+

NT ,�N1/3

)
Eβ,0

[
e−

γ
N

ANT
(I )1{INT

≤0}|I ∈ B̃+
NT ,�N1/3

]
.

By using the FKG inequality described in Proposition B.1 with A := B̃+
NT ,�N1/3 we obtain

Eβ,0
[
e−

γ
N

ANT
(I )1{INT

≤0}|I ∈ B̃+
NT ,�N1/3

]≥(4.59)

Eβ,0
[
e−

γ
N

ANT
(I )|I ∈ B̃+

NT ,�N1/3

]
Pβ,0

[
INT

≤ 0|I ∈ B̃+
NT ,�N1/3

]
.

By Donsker’s invariance principle the rescaled process ( 1
N1/3 I�sN2/3�)s∈[0,T ] converges in dis-

tribution towards (Bs)s∈[0,T ] a standard Brownian motion, in the set of cadlag functions on
[0, T ] endowed with the uniform convergence topology. Therefore, we set mT :=min{Bs, s ∈
[0, T ]} and we obtain

(4.60) lim inf
N→∞ VNT

≥ P

[
BT < 0,mT >−�

2

]
E

[
e−γ

∫ T
0 Bs ds |mT >−�

2

]
.

Finally, using (4.51), (4.52), (4.57) and (4.60), we can deduce from (4.48) that

lim inf
N→∞

1

N1/3 logEN(γ )≥− logC3

T
− 3γ�+ 1

T
logP

[
BT < 0,mT >−�

2

]
+ 1

T
logE

[
e−γ

∫ T
0 Bs ds |mT >−�

2

]
.(4.61)

By using [19], Proposition 8.1 Chapter 2, we can state that there exists a c > 0 such that for
T large enough the inequality P[BT < 0,mT >−�

2 ] ≥ c�3/T 3/2 holds true for every � ∈
(0,1]. As mentioned above (4.40), under the conditioning mT >−�/2, the process (�/2+
Bs)s∈[0,T ] has the same law as (M�/2

s,T )s∈[0,T ]. As a consequence, after taking lim supT→∞
in the right-hand side in (4.61) we can claim that for � ∈ (0,1],

lim inf
N→∞

1

N1/3 logEN(γ )≥− 3γ�+ lim sup
T→∞

1

T
logE

[
e
−γ

∫ T
0 M�/2

s,T ds]
.(4.62)

We conclude by using Claim 4 and by taking lim sup�→0+ in the right-hand side in (4.62).
This proves (4.46) and completes the proof of (4.8). �

PROOF OF CLAIM 1. Let �,T > 0. First we notice that we only need to prove a lower
bound on G

0,x
N,n uniform in x ∈O�/2,�,N as N →∞. Indeed, a time-reversal argument yields

that G
x,0
N,n =G

0,x
N,n for all x ∈N0, n ∈N (recall that Pβ is symmetric, see (2.8)), and

(4.63) inf
x∈O�/2,�,N

G
0,x
N,n ≤ G̃0

N,�,n ≤ 1.

Moreover for any x ∈O�/2,�,N and ρ ∈ [1,3] such that ρNT ∈N, we write

(4.64) G
x,0
N,ρNT

= Eβ,x

[
e−

γ
N

AρNT
(I )|I ∈ B

0,+
ρNT

]
Pβ,x

(
B

0,+
ρNT

)
.
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Lemma 4.10 claims that the first factor is nonincreasing in x. Moreover, the second factor is
polynomial in N uniformly in x ∈O�/2,�,N and ρ ∈ [1,3] ∩ 1

NT
N, see (6.1) below. Thereby,

we deduce from (4.64) that

(4.65) G
x,0
N,ρNT

≥ C16

N2/3 Eβ,�N1/3
[
e−

γ
N

AρNT
(I )|I ∈ B

0,+
ρNT

]
,

for N ∈ N, uniformly in x ∈O�/2,�,N and ρ ∈ [1,3] ∩ 1
NT

N—notice that we wrote �N1/3

instead of ��N1/3�, and we omit all ceil functions henceforth to lighten notation. Recalling
that 1

2T N2/3 ≤ ρNT ≤ 3T N2/3 and ρ ∈ [1,3], (4.65) implies

(4.66) G
x,0
N,ρNT

≥ C16

N2/3 E
β,�

√
2
T

√
ρNT

[
e
−γ ( 3T

ρNT
)3/2AρNT

(I )|I ∈ B
0,+
ρNT

]
.

Furthermore, it is proven in [3], Theorem 2.4, that a properly rescaled random walk of length
n starting from c

√
n, c ∈ R+, conditioned to remain nonnegative and end in 0, converges

in distribution as n→∞ to a Brownian bridge starting from c, conditioned to remain non-
negative and to end in 0. Moreover, ρNT ≥ 1

2T N2/3 for all ρ ∈ [1,3], so the expectation in
the r.h.s of (4.66) converges as N →∞ to some positive constant, uniformly in ρ ∈ [1,3].
Recollecting (4.63), this concludes the proof of the claim. �

PROOF OF CLAIM 2. Recall (4.49) and note that

(4.67) G̃x
N,�,n = Eβ,x

[
e−

γ
N

An(I )1{I∈B̃+n,0}1{In∈O�/2,�,N }
]
.

Let us first consider the case x ∈O�
2 , 3�

4 ,N
. We observe that if a trajectory I := (Ii)

n
i=0 satis-

fies I0 = 0, I ∈ B̃+
n,�N1/3 and In ∈O0,�/4,N then x + I := (x + Ii)

n
i=0 satisfies x + I ∈ B̃+n,0

and x + In ∈O�
2 ,�,N . As a consequence,

G̃x
N,�,n ≥ Eβ,0

[
e−

γ
N

An(x+I )1{I∈B̃+
n,�N1/3 }1{In∈O0,�/4,N }

]
≥ exp

(
−γ�n

N2/3

)
U3

N,�,n.(4.68)

The case x ∈ O 3�
4 ,�,N

is taken care of similarly. The only difference is that we consider

I := (Ii)
n
i=0 satisfies I0 = 0, I ∈ B̃+

n,�N1/3 and In ∈ O−�
4 ,0,N such that x + I ∈ B̃+n,0 and

x + In ∈O�
2 ,�,N . Then

G̃x
N,�,n ≥ Eβ,0

[
e−

γ
N

An(x+I )1{I∈B̃+
n,�N1/3 }1{In∈O−�

4 ,0,N
}
]

≥ exp
(
−γ�n

N2/3

)
U2

N,�,n,(4.69)

and this completes the proof of the claim. �

PROOF OF CLAIM 3. Let us start with proving the Claim for j = 2. We decompose
U2

N,�,n depending on the time τ at which the trajectory is above the x-axis for the last time
before time n, that is τ :=max{i ≤ n : Ii ≥ 0}. This gives

(4.70) U2
N,�,n =

n−1∑
k=0

U
2,k
N,�,n :=

n−1∑
k=0

Eβ,0
[
e−

γ
N

An(I )1{I∈B̃+
n,�N1/3 }1{τ=k}1{In∈Õ2

�,N }
]
.
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For k ∈ {0, . . . , n− 1} we partition the trajectories contributing to U
2,k
N,�,n depending on the

values z and y taken by Iτ and Iτ+1, respectively. This gives

U
2,k
N,�,n :=

∑
z≥0

�N1/3/2∑
y=1

Eβ,0
[
e−

γ
N

Ak(I )1{I∈B̃+
k,�N1/3 }1{Ik=z}

]
Pβ(I1 =−z− y)

Eβ,−y

[
e−

γ
N

An−k−1(I )1{−�N1/3
2 ≤Ii<0,i≤n−k−1}1{In−k−1∈Õ2

�,N }
]
.(4.71)

We observe that Pβ(I1 = −z − y) = cβPβ(I1 = −z)Pβ(I1 = y). Since the increments of I

have a symmetric law, we can rewrite the last expectation of the right-hand side in (4.71) as

Eβ,y

[
e−

γ
N

An−k−1(−I )1{−�N1/3
2 ≤−Ii<0,i≤n−k−1}1{−In−k−1∈Õ2

�,N }
]

≤ exp
(

γ�n

N2/3

)
Eβ,y

[
e−

γ
N

An−k−1(I )1{0<Ii≤�N1/3
2 ,i≤n−k−1}1{In−k−1∈Õ3

�,N\{0}}
]
,(4.72)

where we have used that any trajectory I = (Ii)
n−k−1
i=0 that contributes the expectation of the

left-hand side in (4.72) satisfies An−k−1(I ) = −An−k−1(−I ) ≤ 1
2�N1/3(n− k − 1). Thus,

combining (4.71) with (4.72) we obtain

U
2,k
N,�,n ≤cβ exp

(
γ�n

N2/3

)∑
z≥0

�N1/3/2∑
y=1

Eβ,0
[
e−

γ
N

Ak(I )1{I∈B̃+
k,�N1/3 }1{Ik=z}

]
Pβ(I1 =−z)

× Pβ(I1 = y)Eβ,y

[
e−

γ
N

An−k−1(I )1{0<Ii≤�N1/3
2 ,i≤n−k−1}1{In−k−1∈Õ3

�,N\{0}}
]

≤ cβ exp
(

γ�n

N2/3

)
Eβ,0

[
e−

γ
N

An+1(I )1{I∈B̃+
n+1,�N1/3 }1{τ̃=k+1}1{In+1∈Õ3

�,N }
]
,

(4.73)

where τ̃ :=max{0≤ j ≤ n+ 1 : Ij = 0} is the last time before time n+ 1 at which I touches
the x-axis. Therefore,

n−1∑
k=0

U
2,k
N,�,n ≤ cβ exp

(
γ�n

N2/3

)
Eβ,0

[
e−

γ
N

An+1(I )1{I∈B̃+
n+1,�N1/3 }1{In+1∈Õ3

�,N }
]

≤ cβ exp
(

γ�n

N2/3

)
U3

N,�,n+1,

and this completes the proof of the claim for j = 2.
For the case j = 1, we assume for notational convenience that �N1/3

4 ∈ N. The method is
very close to what we just exposed when j = 2. First, we modify the definition of τ in such
a way that it becomes the last time before n at which the random walk is not smaller than
−�N1/3

4 , that is, τ := max{i ≤ n : Ii ≥ −�N1/3

4 }. We denote by −�N1/3

4 + z the value of Iτ

and by −�N1/3

4 − y the value of Iτ+1 (note that z ≥ 0 and 1≤ y < �N1/3

4 ). Then, we mimic
(4.71) by decomposing each trajectory contributing U1

N,�,n into a first piece between times
0 and τ , a step downwards that equals −z− y and a second piece between times τ + 1 and
n. At the cost of a constant factor we transform the step in-between the first and the second
piece into two steps of length −z and y, respectively. Finally, we replace the second piece of
trajectory by its symmetric with respect to−�N1/3

4 . Note that this latter transformation lowers

the algebraic area swept by this second piece by at most �nN1/3

2 . Concatenating the first
piece, the two steps and the last piece we have built an injective mapping of those trajectories
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contributing U1
N,�,n onto those contributing U2

N,�,n+1. As for the case j = 2, this mapping
has an energetic cost (since we keep taking into account the exponential term −γAn/N ) that
is bounded from above by γ�n/N2/3, which is sufficient to complete the proof. �

PROOF OF CLAIM 4.. For conciseness we set, for �,T > 0,

(4.74) R�(T ) := E
[
e
−γ

∫ T
0 M�

s,T ds]
.

We assume by contradiction that there exists an ε > 0 and a �0 ∈ (0,1] such that for every
� ∈ (0,�0]
(4.75) lim sup

T→∞
1

T
logR�(T )≤ J (γ )− ε.

For �,T > 0, we set τ� := inf{s ≥ 0 : M0
s,T =�} if {s ≥ 0 : M0

s,T =�} �=∅ and τ� =∞
otherwise (τ� depends on T as well but we omit it for conciseness). We state a small ball
inequality that is proven at the end of the present proof, that is, there exists c1, c2 > 0 such
that for T > 0, η ∈ (0,1] and � > 0,

P(τ� ≥ ηT )= P

[
max

s∈[0,ηT ]M
0
s,T ≤�

]
(4.76)

= P

[
max

s∈[0,η]M
0
s,1 ≤�/

√
T
]
≤ c1√

η
e
− c2

�2 ηT
,

where we have used a standard scaling property of Brownian meander to write the second
equality in (4.76).

At this stage, we choose η > 0 and � ∈ (0,�0] such that

(4.77)
(
J (γ )− ε

4

)
(1− η)≤ J (γ )− ε

8
, and − c2η

�2 ≤ J (γ )− ε

2
.

Applying Markov property at time τ� we obtain

E
[
e
−γ

∫ T
0 M0

s,T ds]≤ P(τ� ≥ ηT )+E
[
1{τ�<ηT }R�(T − τ�)

]
.(4.78)

Since � ∈ (0,�0] we apply (4.75) and there exists a T0 > 0 such that R�(T )≤ e(J (γ )−ε/4)T

for T ≥ T0. It remains to apply (4.78) with T ≥ T0/(1− η) in combination with (4.76) and
(4.77) to obtain

E
[
e
−γ

∫ T
0 M0

s,1 ds]≤ c1√
η
e(J (γ )− ε

2 )T +E
[
1{τ�<ηT }R�(T − τ�)

]
≤ c1√

η
e(J (γ )− ε

2 )T +E
[
1{τ�<ηT }e(J (γ )−ε/4)(T−τ�)]

≤ c1√
η
e(J (γ )− ε

2 )T + e(J (γ )−ε/8)T .(4.79)

Taking 1
T

log on both sides in (4.79) and letting T →∞, we obtain the contradiction J (γ )≤
J (γ )− ε/8. This completes the proof of the claim.

Let us quickly sketch the proof of the inequality in (4.76). We use that (M0
s,1)s∈[0,1] is

the limit in distribution of (Bs)s∈[0,1] conditioned on {m1 >−u} as u→ 0+ where we define
mt :=mins∈[0,t](Bs) for 0≤ t ≤ 1 (see [8], Section 2). Therefore, for � > 0, u ∈ (0,�) and
η ∈ (0,1),

(4.80) P

[
max

s∈[0,η]M
0
s,1 ≤�

]
= lim

u→0+
P

[
max

s∈[0,η]Bs ≤�|m1 >−u
]
.
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By applying Markov property at time η/2, we can bound from above the probability in the
right-hand side in (4.80) by
(4.81)

1

P(m1 >−u)
P(Bs ∈ (−u,�],∀s ∈ [0, η/2]) sup

x∈(−u,�]
Px(Bs ∈ (−u,�],∀s ∈ [0, η/2]),

and since a Brownian motion (Bs)s≥0 of law Px has the same law as (x+Bs)s≥0 with (Bs)s≥0
of law P0, (4.81) is also smaller than

(4.82)
P(mη/2 >−u)

P(m1 >−u)
P

[
max

s∈[0,η/2] |Bs | ≤ 2�
]
.

At this stage, the inequality in the right-hand side in (4.76) is obtained by combining (4.82)
with the following two results:

(4.83) P(mt >−u)=
√

2

π

∫ u/
√

t

0
e−

x2
2 dx, for t, u > 0,

and there exist c1, c2 > 0 such that for every κ > 0

(4.84) P

(
max

s∈[0,1] |Bs | ≤ κ
)
≤ c1e

−c2/κ
2
.

Note that (4.83) is obtained by observing that, since B is symmetric, P(mt >−u)= P(Mt <

u), where Mt is the maximum of B on [0, t] and the law of Mt is well known (see, e.g. [19],
Proposition 8.1). Proving (4.84) can be done by estimating the probability that |B| is smaller
than κ at times {j/k,1≤ j ≤ k} with k = �1/κ2� and by applying Markov property at those
times. �

4.5. Step 5: Horizontal extension inside the collapsed phase. We now prove that in the
collapsed phase, the typical horizontal extension of the polymer is of order

√
L for L large.

For any interval I ⊆R, define

(4.85) Z̃bead
L,β,δ(I )= 1

cβeβL
Zbead

L,β,δ(I ) := ∑
1≤N≤L/2,

N∈I∩N

(�β)2NDbead
N,qL

N

,

where qL
N and Dbead

N,qL
N

are defined in Proposition 4.1. Recall that Cbead denotes the collapsed

phase of the single-bead model (see Proposition 3.1), and let (Cbead)
o denote its interior.

LEMMA 4.11. Let (β, δ) ∈ (Cbead)
o, there exists (a1, a2) ∈ (0,∞)2 such that

(4.86) lim
L→∞

Zbead
L,β,δ([a1, a2]

√
L)

Zbead
L,β,δ

= 1.

PROOF. Recall (4.7) and (4.8). By relaxing all constraints on S, I but {I ∈ B
0,+
N } in (4.8),

one has the obvious bound Dbead
N,q ≤ Z

β,δ
wet,N (recall (A.1)). Moreover, Proposition A.1 (ii)

implies that there exists some K > 0 such that Z
β,δ
wet,N ≤Kehβ(δ)N for N ≥ 1. Thereby,

Z̃bead
L,β,δ

([a2
√

L,L])= L/2∑
N=a2

√
L

(�β)2NDbead
N,qL

N

≤
L/2∑

N=a2
√

L

(�β)2NKehβ(δ)N .

In (Cbead)
o, one has 2 log�β + hβ(δ) < 0 (recall (3.6)), so we conclude that there exist

c1, c2 > 0 such that,

(4.87) Z̃bead
L,β,δ

([a2
√

L,L])≤ c1e
−c2a2

√
L,
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for all L≥ 1 and a2 ∈ N√
L

.

Regarding trajectories with an horizontal extension smaller than a1
√

L, we use �β ≤ 1
and (4.7)–(4.8) to write

Z̃bead
L,β,δ

([1, a1
√

L])≤ eδa1
√

L
∑

N≤a1
√

L

Pβ

(
AN+1(S)≥ L

2
−N

)
.(4.88)

The inequality AN+1(S) ≥ L
2 − N implies that max{Si, i ≤ N} ≥ L/2−N

N+1 . Therefore, for L

large enough we can assert that for every a1 ≤ 1 and N ≤ a1
√

L

(4.89) Pβ

(
AN+1(S)≥ L

2
−N

)
≤ Pβ

( ∑
i≤a1

√
L

|Si − Si−1| ≥
√

L

4a1

)
.

Since |S1 − S0| (of law Pβ ) has finite small exponential moments, Chernov’s bound guaran-
tees us that there exists a function ρ : (0,∞) �→R

+ satisfying lima1→0+ ρ(a1)=∞ such that

the right-hand side in (4.89) is bounded above by e−ρ(a1)
√

L. Therefore, for L large enough
and a1 ≤ 1,

Z̃bead
L,β,δ

([1, a1
√

L])≤√Le−(ρ(a1)−δa1)
√

L.(4.90)

At this stage it remains to display a lower bound on Zbead
L,β,δ . To that aim, we only consider

the term indexed by N =√L in the sum in (4.7). Applying Proposition 4.2 with q = 1
2 − 1√

L

and using that g is C1 we deduce that there exists a C > 0 such that

Z̃bead
L,β,δ ≥

C

L
(�β)2

√
Le−g( 1

2 ,0)
√

LEbead√
L, 1

2− 1√
L

.(4.91)

It remains to bound Ebead√
L, 1

2− 1√
L

from below by choosing the trajectory (Ii)
√

L
i=0 that sticks

to zero, that is, Ebead√
L, 1

2− 1√
L

≥ (eδ/cβ)
√

L. We set κ := 2 log�β + δ − g(1/2,0)− log cβ and

we obtain that for L large enough

Z̃bead
L,β,δ ≥

C

L
eκ
√

L.(4.92)

Combining (4.87), (4.90) and (4.92), it suffices to choose a1 (resp. a2) small enough (resp.
large enough) for (4.86) to hold. �

4.6. Step 6: Proof of Theorem 3.2. We finally have all required estimates to prove The-
orem 3.2. Assume β > βc and δ < δbead

c (β). Applying Proposition 4.1 and Lemma 4.11,
we can restrict the sum in (4.7) to N ∈ [a1, a2]

√
L ∩ N. In particular, this implies that

qL
N = L−2N

2N2 ∈ [ 1
2a2

2
− 1

a1
√

L
, 1

2a2
1
], and 1

2a2
2
− 1

a1
√

L
> 0 for L sufficiently large. Thereby Propo-

sition 4.2 yields

(4.93) Zbead
L,β,δ �

eβL

L

a2
√

L∑
N=a1

√
L

(�β)2Ne
−Ng( L

2N2 ,0)
Ebead

N,qL
N

,

uniformly in L ∈ N sufficiently large, and where we also used that g is C1, so g(qL
N,0) =

g( L
2N2 ,0)+O(1/N) uniformly in N ∈ [a1, a2]

√
L∩N.
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Case δ̃c(β) < δ < δbead
c (β). We apply Proposition 4.6 to (4.93), to write

(4.94) Zbead
L,β,δ �

eβL

L

a2
√

L∑
N=a1

√
L

e

√
Lϕβ,δ(

N√
L

)
,

where we recall the definition of ϕβ,δ from (3.13). For notational convenience, we omit
the subscript (β, δ) of ϕ in what follows. Recall that ϕ is C2 and strictly concave. More-
over, for (β, δ) ∈ (Cbead)

o ϕ is negative on (0,∞) and reaches its maximum at some
ã = ã(β, δ) ∈ (0,∞). Therefore, provided that a1 (resp. a2) is sufficiently small (resp. large),
we can assume ã ∈ (a1, a2). Because ϕ is strictly concave and C2 on [a1, a2], there are con-
stants c, c′ > 0 such that

(4.95) −c(a − ã)2 ≤ ϕ(a)− ϕ(ã)≤−c′(a − ã)2,

for all a ∈ [a1, a2]. Thus we can rewrite (4.94) as

(4.96)

C17
eβL

L
e
√

Lϕ(ã)
a2
√

L∑
N=a1

√
L

e
−c
√

L( N√
L
−ã)2

≤Zbead
L,β,δ ≤ C18

eβL

L
e
√

Lϕ(ã)
a2
√

L∑
N=a1

√
L

e
−c′
√

L( N√
L
−ã)2

.

Finally, we observe that for any c > 0 and b1 < 0 < b2, one has

(4.97)
∑

b1
√

L≤N≤b2
√

L,
N∈Z

e
−c N2√

L �L1/4.

Indeed, let R > 0, and define IR,L = [−RL1/4,RL1/4]. We decompose the above sum into
S

L,β,R
1 + S

L,β,R
2 , where

S
L,β,R
1 := ∑

N∈IR,L∩Z
e
−c N2√

L , and S
L,β,R
2 := ∑

N∈[b1
√

L,b2
√

L]\IR,L,
N∈Z

e
−c N2√

L .

Let us first handle S
L,β,R
1 . With a Riemann sum approximation, we have

(4.98) L−1/4S
L,β,R
1 = L−1/4

RL1/4∑
N=−RL1/4

e
−c( N

L1/4 )2 −→
L→∞

∫ R

−R
e−cx2

dx,

therefore S
L,β,R
1 ∼L1/4 ∫ R

−R e−cx2
dx as L→∞. Regarding S

L,β,R
2 , we have

∑
N∈[b1

√
L,b2

√
L]\IR,L,

N∈Z

e
−c N2√

L ≤ 2
∑

N>RL1/4

e
−c( N

L1/4 )2

,

and a Riemann sum approximation yields that

(4.99) lim
L→∞L−1/4

∑
N>RL1/4

e
−c( N

L1/4 )2 =
∫ ∞
R

e−cx2
dx.

Hence there is CR > 0 such that S
L,β,R
2 ≤ CRL1/4 for all L ≥ 1. Together with (4.98), this

concludes the proof of (4.97). Plugging (4.97) into (4.96), this proves Theorem 3.2 in (AC)o.
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Case δ = 0. We now prove the theorem when δ = 0—then the case 0 < δ ≤ δ̃c(β) is a
straightforward consequence of the other two. Let ε > 0. Recollecting (4.93) and Proposi-
tion 4.8, and noticing that q �→ J (σβ∂qg(q,0)) is C1 on (0,∞); we can write the bounds

C19
eβL

L

a2
√

L∑
N=a1

√
L

exp
(√

Lϕ

(
N√
L

)
+L1/6

(
ψ

(
N√
L

)
− ε

))

≤Zbead
L,β,0 ≤ C20

eβL

L

a2
√

L∑
N=a1

√
L

exp
(√

Lϕ

(
N√
L

)
+L1/6

(
ψ

(
N√
L

)
+ ε

))
,(4.100)

for L sufficiently large, where ϕ is defined in (3.13), and we define for all a ∈ (0,∞),

(4.101) ψ(a) := a1/3J

(
σβ∂qg

(
1

2a2 ,0
))

< 0.

Notice that we can drop the constant and polynomial factors by slightly adjusting ε. Let us
fix some R > 0 and define

I 1
R,L := ã

√
L+ [−RL1/3,RL1/3], and I 2

R,L := [a1
√

L,a2
√

L] \ I 1
R,L,

so (4.100) yields

(4.102) eβLQ1
L,R,−ε ≤Zbead

L,β,0 ≤ eβL(Q1
L,R,ε +Q2

L,R,ε

)
,

where we define for any i ∈ {1,2} and η ∈ {−ε, ε},
Qi

L,R,η :=
∑

N∈I i
R,L

exp
(√

Lϕ

(
N√
L

)
+L1/6

(
ψ

(
N√
L

)
+ η

))
.

Regarding the lower bound, recall that ψ is C1 on (0,∞), so there is some C21 > 0 such that

(4.103)
∣∣∣∣ψ(

N√
L

)
−ψ(ã)

∣∣∣∣≤ C21RL−1/6,

uniformly in L sufficiently large and N ∈ I 1
R,L. Hence, for R ≥ 1 and L large,

(4.104)

Q1
L,R,−ε ≥Q1

L,1,−ε ≥ exp
(√

Lϕ(ã)+L1/6(ψ(ã)− ε
)−C21

)
×

ã
√

L+L1/3∑
N=ã

√
L−L1/3

exp
(√

L

(
ϕ

(
N√
L

)
− ϕ(ã)

))
,

so that by recalling (4.95) and (4.98) we obtain that the latter sum is of order C22L
1/4 ≥ 1

when L→∞, which yields the expected lower bound (by slightly adjusting ε).
Similarly to the lower bound just above, we deduce from (4.103) and from (4.95) to (4.98)

that

(4.105) Q1
L,R,ε ≤ exp

(√
Lϕ(ã)+L1/6(ψ(ã)+ 2ε

))
,

for L sufficiently large. Regarding Q2
L,R,ε , (4.95) yields that for all N ∈ I 2

R,L,

√
L

(
ϕ

(
N√
L

)
− ϕ(ã)

)
≤−c′R2L1/6.

Moreover, ψ(N/
√

L)+ ε ≤ 1
2 sup[a1,a2]ψ < 0 for all N ∈ [a1

√
L,a2

√
L], L ∈ N provided

that ε is sufficiently small. Thereby,

Q2
L,R,ε ≤ (a2 − a1)

√
L× exp

(√
Lϕ(ã)− c′R2L1/6).
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Finally, noticing that Q1
L,R,ε ≥ Q1

L,R,−ε and recalling (4.104), we have Q2
L,R,ε/Q

1
L,R,ε =

o(1), provided that R satisfies −c′R2 < inf[a1,a2]ψ − ε. Recollecting (4.102) this completes
the proof of the upper bound, and concludes the case δ = 0.

Case 0 < δ ≤ δ̃c(β). When δ ∈ (0, δ̃(β)], we do not provide sharp estimates but we can
still claim the following: first, δ �→ Zbead

L,β,δ is clearly nondecreasing, so Zbead
L,β,δ ≥ Zbead

L,β,0, and
the lower bound from the case δ = 0 also holds for any δ > 0. Second, notice that we have
Ebead

N,q ≤ Z
β,δ
wet,N for all q > 0, N ∈ N (see (4.10) and (A.1)), so Proposition A.1 (ii) implies

that there exists C23 > 0 (which depends on β , δ) such that Ebead
N,q ≤ C23 for N ∈ N. Thus

(4.93) yields

Zbead
L,β,δ ≤

eβL

L
C23

a2
√

L∑
N=a1

√
L

e

√
Lϕ( N√

L
)
,

where ϕ is defined in (3.13), with hβ(δ) = 0 for all δ ∈ (0, δ̃(β)]. Then the behavior of the
sum above is the same as in the case δ ∈ (̃δ(β), δbead

c (β)), which yields the same upper bound.
This fully concludes the proof of Theorem 3.2, subject to Lemmas 4.5 and 4.10, and Propo-
sition 4.3.

4.7. Proof of Corollary 3.3. In this section, we prove Corollary 3.3, which follows di-
rectly from Theorem 3.2. Let β > βc. We first focus on the case δ ∈ (̃δc(β), δbead

c (β)). Re-
call the expression of ϕ′(a) = ϕ′(β,δ)(a) in (3.14) and the definition of ã(β, δ), then notice

that (δ, a) �→ ϕ′(β,δ)(a) is C1 on (̃δc(β), δbead
c (β))× (0,+∞) and ϕ′′(β,δ)(ã(β, δ)) < 0. It fol-

lows from the implicit function theorem that δ �→ ã(β, δ) is C1 on (̃δc(β), δbead
c (β)). Hence,

δ �→�(β, δ) is C1 on (̃δc(β), δbead
c (β)) too.

Let δ ∈ (̃δc(β), δbead
c (β)) and ε > 0, and let us denote for � ∈�bead

L ,

Q(�) :=
N�∑
k=1

1{∑k
i=1 �i=0},

for conciseness. We recall the definition of Pbead
L,β,δ in (3.4) and we denote by Ebead

L,β,δ its asso-

ciated expectation. Let t > 0 be such that δ+ t ∈ (̃δc(β), δbead
c (β)), and write with Chernov’s

bound

Pbead
L,β,δ

(
Q(�)≥ (

∂δ�(β, δ)+ ε
)√

L
)≤ Ebead

L,β,δ

[
etQ(�)]e−t (∂δ�(β,δ)+ε)

√
L

≤ Zbead
L,β,δ+t

Zbead
L,β,δ

e−t (∂δ�(β,δ)+ε)
√

L.

Applying Theorem 3.2(i), we therefore get that there exists some C24 > 0 such that for L≥ 1,

Pbead
L,β,δ

(
Q(�)≥ (

∂δ�(β, δ)+ ε
)√

L
)≤ C24e

(�(β,δ+t)−�(β,δ)−t∂δ�(β,δ)−tε)
√

L.

Finally, �(β, δ + t)−�(β, δ)− t∂δ�(β, δ) = o(t) as t → 0 (since δ �→�(β, δ) is C1), so
we can fix t > 0 such that the right-hand side above goes to 0 as L→∞. Similarly, we can
write for s > 0 such that δ − s ∈ (̃δc(β), δbead

c (β)),

Pbead
L,β,δ

(
Q(�)≤ (

∂δ�(β, δ)− ε
)√

L
)≤ Zbead

L,β,δ−s

Zbead
L,β,δ

es(∂δ�(β,δ)−ε)
√

L

≤ C25e
(�(β,δ−s)−�(β,δ)+s∂δ�(β,δ)−sε)

√
L,



1570 A. LEGRAND AND N. PÉTRÉLIS

for some C25 > 0, where we also applied Chernov’s bound and Theorem 3.2(i). We can then
choose s > 0 such that this term also goes to 0 as L →∞. This concludes the proof of
Corollary 3.3(i).

Regarding the case δ ∈ [0, δ̃c(β)), let K > 0, ε > 0 and t > 0 be such that δ + t < δ̃c(β).
Using once again Chernov’s bound and Theorem 3.2(ii), there exist C26 > 0 and L0 ∈N such
that for L≥ L0,

Pbead
L,β,δ

(
Q(�)≥KL1/6)≤ Ebead

L,β,δ

[
etQ(�)]e−tKL1/6

≤ Zbead
L,β,δ+t

Zbead
L,β,δ

e−tKL1/6 ≤C26L
−3/4e(−�(β)+ε−tK)L1/6

.

This goes to 0 as L→∞ provided that K has been fixed sufficiently large, and concludes
the proof of Corollary 3.3(ii). �

5. Proof of Theorem 2.2 and Proposition 3.1.

5.1. Proof of Theorem 2.2. The proof of Theorem 2.2 also relies on the random walk
representation introduced in [23] and adapted in the proof of Theorem 3.2 (see Section 4), but
it is much less involved. We divide the proof into 4 steps. First, we prove that the free energy
is not changed when we additionally constrain the polymer to end on the horizontal axis (i.e.,∑N

i=1 �i = 0)—in particular, the constrained partition function Z
+,c
L,β,δ is super-multiplicative,

which implies the well-posedness of f . Next, we adapt to the present model the random-walk
representation of IPDSAW. As in Section 4, we derive a probabilistic representation of the
partition function by rewriting, for every N ≤ L, the contribution to the partition function of
those trajectories made of N stretches, in terms of two auxiliary (coupled) random walks S

and I . Then we compute the generating function of the partition function Z
+,c
L,β,δ . With our

random walk representation, we can rewrite it as the partition function of a wetting model
for two independent random walks, with the in-between area constraint of S and I becoming
an in-between area penalization in the generating function. This allows us to characterize
f̃ in terms of the free energy of this “coupled, in-between area penalized” wetting model.
Finally we place ourselves on the critical curve between C and E where the area penalization
vanishes, and we apply well-known results on the wetting model to derive the equation of the
curve.

Step 1: Constraining the partition function. Let us define the constrained partition func-
tion:

(5.1) Z
+,c
L,β,δ :=

L∑
N=1

∑
�∈L+N,L

�0=�N+1=0

eH(�)1{∑N
i=1 �i=0}.

Notice that this partition function is super-multiplicative: indeed for any L1,L2 ≥ 0, we
bound Z

+,c
L1+L2,β,δ from below by constraining it to touch the axis between the (L1−1)th and

L1th monomers; then we notice that the contribution to H(�) from self-touching between the
two parts of the polymer (before and after the segment (L1−1,L1)) are nonnegative; and we
separate the trajectory in two at the L1th monomer (recall that all our trajectories end with a
horizontal step) to finally write

(5.2) Z
+,c
L1+L2,β,δ ≥Z

+,c
L1,β,δZ

+,c
L2,β,δ.

Hence 1
L

logZ
+,c
L,β,δ converges as L→∞, by Fekete’s lemma.
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We now claim that Z+L,β,δ and Z
+,c
L,β,δ are comparable. More precisely for L ∈N,

(5.3)
1

L2

(
Z+L,β,δ

)2 ≤Z
+,c
2L,β,δ ≤Z+2L,β,δ.

The upper bound is straightforward. For the lower bound, we constrain Z
+,c
2L,β,δ to make a

horizontal step between the (L− 1)th and Lth monomers, and sum over its possible heights.
Writing zL−1 = (xL−1, yL−1) and zL = (xL, yL) the coordinates of those monomers, we have

Z
+,c
2L+2,β,δ ≥

L−1∑
y=0

Z+2L,β,δ(yL−1 = yL = y, xL = 1+ xL−1).

We then separate the trajectory at the (L − 1)th monomer. The first half gives the term
Z+L,β,δ(yL = y) (recall that the last step is always horizontal). As for the second half, we

shift the last horizontal step to just before zL (which costs at most a factor eδ), then we re-
verse the trajectory horizontally, to obtain that it is bounded from below by Z+L,β,δ(yL = y).
Therefore,

Z
+,c
2L,β,δ ≥

L−1∑
y=0

(
Z+L,β,δ(yL = y)

)2 ≥ (
sup

0≤y≤L−1
Z+L,β,δ(yL = y)

)2
,

and we conclude the proof of (5.3) by writing Z+L,β,δ ≤ L sup0≤y≤L−1 Z+L,β,δ(yL = y). In
particular, this implies that

(5.4) f (β, δ)= lim
L→∞

1

L
logZ+L,β,δ = lim

L→∞
1

L
logZ

+,c
L,β,δ,

is well defined, and that we can replace Z+L,β,δ with Z
+,c
L,β,δ to prove Theorem 2.2.

Step 2: A random-walk representation. We provide a probabilistic description of the con-
strained partition function Z

+,c
L,β,δ as in Section 4—which also applies to the free counterpart

Z+L,β,δ . Recalling (5.1), (2.2) and (4.1), we can rewrite the constrained partition function
similarly to (4.2) to obtain

(5.5) Z
+,c
L,β,δ = eβL

L∑
N=1

e−βN
∑

�∈L+N,L

�0=�N+1=0

e−
β
2
∑N

i=0 |�i+�i+1|e
δ
∑N

k=1 1{∑k
i=1 �i=0}1{∑N

i=1 �i=0}.

Recall the definition of Pβ in (2.8): similarly to (4.3), we consider two independent one-
dimensional random walks S := (Si)i≥0 and I := (Ii)i≥0 starting from 0 and such that
(Si+1 − Si)i≥0 and (Ii+1 − Ii)i≥0 are i.i.d. sequences of random variables of law Pβ . We
notice that for every � ∈ L+N,L (with �0 = �N+1 = 0) the first factor in the second sum in (5.5)
satisfies

(5.6) e−
β
2
∑N

i=0 |�i+�i+1| = cN+1
β Pβ

(
Sk =

2k−1∑
i=0

�i,∀k ≤NS

)
Pβ

(
Ik =

2k∑
i=0

�i,∀k ≤NI

)
,

with NS := �N/2� + 1 and NI := �N/2�. Hence, we define S and I as in Section 4.1. Simi-
larly to (4.4), define

(5.7) GN(S, I ) :=
NI∑
k=1

|Ik − Sk| +
NS∑
k=1

|Sk − Ik−1|,
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and our definition of S, I implies
∑N

i=1 |�i | =GN(S, I ). Finally, the constraint
∑N

i=1 �i = 0
is equivalent to SNS

= INI
= 0 (recall �N+1 = 0).

Defining Z̃
+,c
L,β,δ := 1

cβ
e−βLZ

+,c
L,β,δ , and plugging (5.6) into (5.5), we obtain

(5.8)
Z̃
+,c
L,β,δ =

L∑
N=1

(�β)NEβ

[
eδ

∑NS
k=1 1{Sk=0}eδ

∑NI
k=1 1{Ik=0}

× 1{GN(S,I )=L−N}1{S∈B
0,+
NS
}1{I∈B

0,+
NI
}
]
,

where we recall �β = cβe−β , GN(S, I ) is defined in (5.7), and B0,+
n is the set of nonnegative

trajectories of length n ending on the horizontal axis (see (2.10)).

Step 3: The generating function of Z̃
+,c
L,β,δ . Recalling (5.4), the excess free energy satisfies

(5.9) f̃ (β, δ)= sup
{
γ ≥ 0;∑

L≥1

Z̃
+,c
L,β,δe

−γL =+∞
}
,

and f̃ (β, δ) = 0 if this set is empty. Let us compute the generating function of the tilted
partition function. Recalling (5.8) and inverting the sums over L and N , we obtain

(5.10)
∑
L≥1

Z̃
+,c
L,β,δe

−γL = ∑
N≥1

(
�βe−γ )NQ

β,δ,γ
N ,

where we define

(5.11) Q
β,δ,γ
N := Eβ,0

[
e−γGN(S,I )eδ

∑NS
k=1 1{Sk=0}eδ

∑NI
k=1 1{Ik=0}1{S∈B

0,+
NS

,I∈B
0,+
NI
}
]
,

which is the partition function of a coupled wetting model, with an additional “in-between
area” penalization. Note that (Q

β,δ,γ
N )N≥1 is super-multiplicative, therefore we can define the

free energy of this model:

(5.12) hβ(δ, γ ) := lim
N→∞

1

N
logQ

β,δ,γ
N ,

Notice that hβ(δ, γ )≤ δ (in particular hβ is finite), hβ is nonincreasing in γ and nondecreas-
ing in δ, and it is continuous.

Recollecting (5.9), we conclude that f̃ (β, δ) is the only positive solution (if it exists) in γ

of

(5.13) log�β − γ + hβ(δ, γ )= 0,

and f̃ (β, δ) = 0 otherwise (this equation has at most one solution because γ �→ −γ +
hβ(δ, γ ) is decreasing).

Step 4: Characterizing the critical curve. Let (β, δ) ∈ C ∩ E be a point of the critical
curve: then f̃ (β, δ)= 0 (because f̃ is continuous) and log�β + hβ(δ,0)= 0 (because (5.13)

is continuous in γ ↘ 0). In particular, there is no area constraint in Q
β,δ,0
N , and because S

and I are independent we can uncouple them and write

(5.14) Q
β,δ,0
N = Z

β,δ
wet,NS

×Z
β,δ
wet,NI

,

where Z
β,δ
wet,N , N ≥ 1 is the partition function of a wetting model (see (A.1)). By applying

1
N

log to (5.14), we notice that hβ(δ,0) matches exactly the free energy of the wetting model:
hβ(δ,0)= hβ(δ) (see (2.9)).
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The asymptotic behavior of Z
β,δ
wet,N is already well known—see Proposition A.1. Thus, we

can finally conclude the proof of Theorem 2.2. Recall that (β, δ) ∈ C ∩ E implies log�β +
hβ(δ)= 0, where �β is decreasing in β , and βc is the only solution of �β = 1. Therefore:

• if β < βc, then log�β + hβ(δ)≥ log�β > 0 so (β, δ) /∈ C ∩ E ,
• if β = βc, then (β, δ) ∈ C ∩ E if and only if hβ(δ)= 0, that is δ ≤ δ̃c(βc),
• if β > βc, then there is a unique solution in δ ≥ δ̃c(β) to hβ(δ)=− log�β , which we note

δc(β).

Moreover, recall that the left-hand side of (5.13) is decreasing and continuous in γ , so
f̃ (β, δ) = 0 if and only if log�β + hβ(δ) ≤ 0, that is β ≥ βc and δ ≤ δc(β); which fully
characterizes C. Finally, the analytic expression of δc(β) follows directly from (2.11) and
(A.4) by solving a quadratic equation; details are left to the reader.

5.2. Proof of Proposition 3.1. This is very similar to Theorem 2.2. The single-bead par-
tition Zbead

L,β,δ function is already constrained to return to 0, hence it is super-multiplicative

(and f bead is well-posed) and we do not need to replicate Step 1. The random walk repre-
sentation is already laid out in Step 2 of Section 5.1—notice that the main difference with
(5.8) is the constraint {S � I } (recall (4.5)), in particular the random walk S cannot touch the
wall. Thereby the generating function of Z̃bead

L,β,δ (defined in (4.7)) can be written (similarly to
(5.10)) as

(5.15)
∑
L≥1

Z̃bead
L,β,δe

−γL = ∑
N≥1

(
�βe−γ )2N

R
β,δ,γ
N ,

we define

(5.16) R
β,δ,γ
N := Eβ,0

[
e−2γ (AN+1(S)−AN(I))eδ

∑N
k=1 1{Ik=0}1{S�I }1{S∈B

0,+
N+1,I∈B

0,+
N }

]
.

(R
β,δ,γ
N )N≥1 is super-multiplicative, thereby we define its free energy

κβ(δ, γ ) := lim
N→∞

1

N
logR

β,δ,γ
N ,

and we note that f̃ bead(β, δ) is the only positive solution (if it exists) in γ of

2 log�β + 2γ + κβ(δ, γ )= 0,

and f̃ bead(β, δ)= 0 otherwise.
Let (β, δ) ∈ ∂Cbead be on the critical curve (which implies f̃ bead(β, δ)= 0 and 2 log�β +

κβ(δ,0)= 0). We notice R
β,δ,γ
N ≤Z

β,δ
wet,N , so κβ(δ, γ )≤ hβ(δ), and we now compute a lower

bound on R
β,δ
N :=R

β,δ,0
N to deduce κβ(δ,0)= hβ(δ).

Let α > 0 and recall (5.16) with γ = 0. Constraining Ik to remain below �α√N� for all
1 ≤ k < N , and constraining S to S1 = SN = �α

√
N� + 1, and Sk ≥ �α

√
N� + 1 for all

2≤ k < N , we obtain the lower bound

R
β,δ
N ≥ Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{Ik≤�α

√
N�,∀1≤k<N}1{I∈B

0,+
N }

]
× Pβ,0

(
S1 = SN = �α

√
N� + 1, SN+1 = 0, Sk ≥ �α

√
N� + 1,∀2≤ k < N

)
≥ Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{Ik≤�α

√
N�,∀1≤k<N}1{I∈B

0,+
N }

](e−
β
2 �α

√
N�− β

2

cβ

)2
Pβ,0

(
B

0,+
N−1

)
,
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where we can estimate Pβ,0(B
0,+
N−1)�N−3/2 with (6.1) below. Moreover, we notice that

(xk)
N
k=1 �→ eδ

∑N
k=1 1{xk=0}, and (xk)

N
k=1 �→ 1{xk≤�α

√
N�,∀1≤k<N},

are both bounded, nonincreasing functions on B
0,+
N , hence we can apply an FKG inequality

(see Proposition B.1) to claim

(5.17)
Eβ,0

[
eδ

∑N
k=1 1{Ik=0}1{Ik≤�α

√
N�,∀1≤k<N}1{I∈B

0,+
N }

]
≥Z

β,δ
wet,N × Pβ,0

(
Ik ≤ �α

√
N�,∀1≤ k < N |I ∈ B

0,+
N

)
,

where we recall that Z
β,δ
wet,N , N ≥ 1 is the partition function of a wetting model (see (A.1)),

and the second factor in the right-hand side is bounded from below by some positive constant
provided that α is large (see (6.2) below).

All this implies κβ(δ,0) ≥ hβ(δ), so κβ(δ,0)= hβ(δ). Therefore, we conclude the proof
of Proposition 3.1 similarly to Theorem 2.2.

6. Proofs of technical results. In this section we prove Lemmas 4.5 and 4.10, then the
much more involved Proposition 4.3.

6.1. Proof of Lemma 4.5. Before proving Lemma 4.5, we provide a useful estimate on
nonnegative random walk bridges proven in [3]. Recall the definition of B

y,+
n in (2.10), and

that Pβ,x is the law of a random walk with increments distributed as Pβ (see (2.8)) starting
from x ≥ 0. One has

(6.1) Pβ,0
(
Bx,+

n

)= Pβ,x

(
B0,+

n

)� max(x,1)

n3/2 ,

uniformly in n ≥ 1 and 0 ≤ x ≤ C1
√

n for any C1 > 0. The first identity is obtained by
reversing the walk in time (notice that Pβ is symmetric), and the asymptotic behavior is
derived in [3], (4.3).

It is also proven in [3], Corollary 2.5, that a properly rescaled centered random walk with
finite variance conditioned to remain nonnegative and to finish in 0 converges (in distribution)
to a Brownian excursion. The maximum being a continuous function on C([0,1],R), we
thereby deduce that for any η > 0, there exist CA > 0 and N0 ∈N such that

(6.2) Pβ,0

(
max

1≤k≤N
(Xk) > CA

√
N |X ∈ B

0,+
N

)
≤ η,

for all N ≥N0.

PROOF OF LEMMA 4.5. Notice that max1≤k≤N(Xk) ≤ CA

√
N implies that AN(X) ≤

CAN3/2. Thus, we have the lower bound

(6.3)

Pβ,0
(∀1≤ k < N,Xk ≤ f̃I (k);AN(X)≤ CAN3/2|X ∈ B

0,+
N

)
≥ 1− Pβ,0

(
∃1≤ k < N,Xk > f̃I (k); max

1≤k≤N
(Xk)≤ CA

√
N |X ∈ B

0,+
N

)
− Pβ,0

(
max

1≤k≤N
(Xk) > CA

√
N |X ∈ B

0,+
N

)
.

Recalling (6.2), the last term in (6.3) is not larger than some η > 0 arbitrarily small. Regarding
the other term, we write

(6.4)

Pβ,0

(
∃1≤ k < N,Xk > f̃I (k); max

1≤k≤N
(Xk)≤ CA

√
N |X ∈ B

0,+
N

)

≤ 2
�N/2�∑
k=1

Pβ,0
(
f̃I (k) < Xk ≤ CA

√
N |X ∈ B

0,+
N

)
,
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where we reversed in time all terms with index larger than �N/2�. For any k ≤ �N/2�, we
partition the kth term over possible values of Xk , then we apply Markov property at time k to
write

Pβ,0
(
f̃I (k) < Xk ≤ CA

√
N |X ∈ B

0,+
N

)= CA

√
N∑

z=f̃I (k)+1

Pβ,0
(
B

z,+
k

)Pβ,z(B
0,+
N−k)

Pβ,0(B
0,+
N )

.(6.5)

Recalling (6.1), we can bound Pβ,z(B
0,+
N−k)/Pβ,0(B

0,+
N ) from above by C2 × z with C2 > 0 a

constant uniform in z≤ CA

√
N (recall that N − k ≥ N

2 ). Hence, (6.5) becomes

Pβ,0
(
f̃I (k) < Xk ≤ CA

√
N |X ∈ B

0,+
N

)≤ C2Eβ,0[Xk1{f̃I (k)<Xk≤CA

√
N}1{Xi≥0,∀i≤k}].

Recall the definition of f̃I in (4.11). Noticing that Eβ,0[eλXk ] = ekL(λ) and Eβ,0[Xke
λXk ] =

∂λEβ,0[eλXk ] = kL′(λ)ekL(λ) for any 0 < λ < β/2, and choosing λ sufficiently small so that
L(λ) < λγ (recall γ > 0 and L(λ)∼ λ2σ 2

β/2 as λ↘ 0), we obtain with Markov’s inequality

Pβ,0
(
f̃I (k) < Xk ≤ CA

√
N |X ∈ B

0,+
N

)≤ C2Eβ,0
[
Xke

λ(Xk−γ k−KI )
]

≤ C3ke−λKI e−k(λγ−L(λ)).

The right-hand side being summable in k, there exists C4 > 0 such that

(6.6)
�N/2�∑
k=1

Pβ,0
(
f̃I (k) < Xk ≤ CA

√
N |X ∈ B

0,+
N

)≤ C4e
−λKI ,

uniformly in N ≥ N0. Assuming KI is sufficiently large, this term is smaller than any fixed
η > 0. Recollecting (6.3), (6.2), (6.4) and (6.6) and fixing η = ε/3, this concludes the proof.

�

6.2. Proof of Lemma 4.10. Let us define for any x,m ∈N0 some α > 0,

(6.7) Dx,m := Eβ,x

[
e−αAm(I)|I ∈ B+m

]
.

Let us prove that x �→ Dx,m is nonincreasing for any α > 0, m ∈ N0 by induction on m.
Notice that the proof also holds when conditioning by B0,+

m instead of B+m without further
changes (this is required in the proof of Claim 1 in Section 4.4).

PROOF OF LEMMA 4.10. When m= 0, Dx,0 = e−αx for all x ≥ 0, which is nonincreas-
ing. Let m ∈N and assume x �→Dx,m−1 is nonincreasing. For any x ≥ 0 and α > 0, one has
by Markov’s property

Eβ,x

[
e−αAm(I)|B+m

]=∑
y≥0

Eβ,x

[
e−αxe−α

∑m
k=1 Ik 1{I1=y}|B+m

]
= e−αx

∑
y≥0

Eβ,y

[
e−αAm−1(I )|B+m−1

]
Rx(y),

(6.8)

where

(6.9) Rx(y) := Pβ,x(I1 = y)Pβ,y(B
+
m−1)

Pβ,x(B
+
m)

= Pβ,x

(
I1 = y|B+m

)
.
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For any x, y ≥ 0, let Rx(y) :=∑
t≥y Rx(t), so (6.8) becomes

eαxEβ,x

[
e−αAm(I)|B+m

]
=∑

y≥0

Eβ,y

[
e−αAm−1(I )|B+m−1

](
Rx(y)−Rx(y + 1)

)
=Rx(0)Eβ,0

[
e−αAm−1(I )|B+m−1

]
+∑

y≥1

Rx(y)
(
Eβ,y

[
e−αAm−1(I )|B+m−1

]−Eβ,y−1
[
e−αAm−1(I )|B+m−1

])
.

(6.10)

Recall that we assumed that y �→Dy,m−1 is nonincreasing, so

Eβ,y

[
e−αAm−1(I )|B+m−1

]−Eβ,y−1
[
e−αAm−1(I )|B+m−1

]≤ 0,

for all y ≥ 1.
Moreover, we claim that Rx+1(y) ≥ Rx(y) for all x, y,m ≥ 0. To prove this, we first

observe that for all x,m ∈N0, and for any trajectory (sk)
m
k=1 ∈ Z

m,

(6.11) Pβ,x+1
(
(Ik)

m
k=1 = (sk)

m
k=1

)= e±
β
2 Pβ,x

(
(Ik)

m
k=1 = (sk)

m
k=1

)
,

where the sign ± is + if s1 > x and − otherwise; and then we distinguish the cases y ≥
x + 1 (where the proof is instantaneous), and y ≤ x + 1. For the latter case, it is obtained
by induction on 0≤ y ≤ x + 1 for a fixed x ∈ N0. To be more specific, when y = 0, one has
Rx(0)= 1 for all x ≥ 0. Now assume that Rx+1(y)≥Rx(y) holds for some 0≤ y ≤ x. Thus,

Rx(y + 1)=Rx(y)− Pβ,x

(
I1 = y|B+m

)
≤Rx+1(y)− Pβ,x(I1 = y, I ∈ B+m)

Pβ,x(B
+
m)

.
(6.12)

Moreover, (6.11) ensures us on the one hand that Pβ,x(B
+
m) ≤ eβ/2Px+1(B

+
m), and on the

other hand that Pβ,x(I1 = y, I ∈ B+m)= eβ/2Pβ,x+1(I1 = y, I ∈ B+m) because y ≤ x. There-
fore, (6.12) becomes Rx(y+1)≤Rx+1(y)−Pβ,x+1(I1 = y|B+m), which concludes the proof
that Rx+1(y)≥Rx(y).

Noticing also that Rx(0)=Rx+1(0)= 1 for all x ≥ 0, we obtain the lower bound

eαxEβ,x

[
e−αAm(I)|B+m

]
≥Rx+1(0)Eβ,0

[
e−αAm−1(I )|B+m−1

]
+∑

y≥1

Rx+1(y)
(
Eβ,y

[
e−αAm−1(I )|B+m−1

]−Eβ,y−1
[
e−αAm−1(I )|B+m−1

])
,

and the identity (6.10) finally yields

eαxEβ,x

[
e−αAm(I)|B+m

]≥ eα(x+1)Eβ,x+1
[
e−αAm(I)|B+m

]
,

which concludes the induction. �

6.3. Proof of Proposition 4.3. As mentioned in Remark 4.4(iii), an equivalent of the
probability that such random walk satisfies (AN,XN)= (qN2,pN) was first rigorously de-
rived in [7]. The present proposition is an improvement of [4], Proposition 2.5, where a
polynomial lower bound is displayed for the probability that an N -step walk (of law Pβ,0)

remains positive and satisfies (AN,XN)= (qN2,0). To that aim, we recall some tools intro-
duced in [7] and used later on in [4]. We keep in mind that all the upcoming claims are proven
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in [4]. Recall that L(h) is the logarithmic moment generating function of the increments of
the random walk X; see (3.9). To lighten upcoming formulae, let us define for any N ∈N,

(6.13) 	N := (
AN(X)/N,XN

)
,

(notice that the area is normalized by n in this definition), as well as the parallelograms

(6.14) Dβ,N := {
(h0, h1) ∈R

2; |h1|< β/2,
∣∣(1− 1/N)h0 + h1

∣∣< β/2
}
.

For any h ∈Dβ,N , we define the tilted law:

(6.15)
dPN,h

dPβ,0
(X)= eh·	N−L	N

(h), L	N
(h) := log Eβ,0

[
eh·	N

]
,

where h ·	N := h0AN/N + h1XN denotes the scalar product. Note that

(6.16) h ·	N =
N∑

k=1

((
1− k

N

)
h0 + h1

)
(Xk −Xk−1),

so this change of measure is equivalent to tilt all increments of X independently, with an
intensity depending on k. For any q,p ∈R and N ∈N, let hq,p

N = (h
q,p
N,0, h

q,p
N,1) be the unique

solution in h ∈Dβ,N of the equation

(6.17) EN,h

[
1

N
	N

]
=∇

[
1

N
L	N

]
(h)= (q,p),

where it is proven in [4], Lem. 5.4, that ∇[ 1
N
L	N

] is a C1 diffeomorphism from Dβ,N to R
2.

Notice that

(6.18) Pβ,0
(
	N = (Nq,Np)

)= PN,hq,p
N

(
	N = (Nq,Np)

)
e−Nhq,p

N ·(q,p)+L	N
(hq,p

N ).

Moreover, [4], Proposition 6.1, gives a uniform local central limit theorem for PN,hq,p
N

: for

any q1 < q2, p1 < p2, t1 < t2 and s1 < s2, there are constants C5,C
′
5 > 0 and N0 ∈ N such

that for any q ∈ [q1, q2], p ∈ [p1,p2], t ∈ [t1, t2], s ∈ [s1, s2] and N ≥N0,

(6.19)
C5

N2 ≤ PN,hq,p
N

(
	N = (qN + t

√
N,pN + s

√
N)

)≤ C′5
N2 .

Notice that the authors of [4] only state this for q ∈ [q1, q2] and p = 0, but their proof can
be extended to p ∈ [p1,p2] without further difficulty since the local limit theorem and all
uniformity arguments for q hold similarly for p �= 0.

The asymptotic of hq,p
N for large N can be described sharply. For any h ∈ Dβ , Recall

that we defined L	(h) := ∫ 1
0 L(h0x + h1) dx for all h ∈ Dβ (see (3.10)), and let h̃

q,p =
(h̃

q,p
0 , h̃

q,p
1 ) be the unique solution in h ∈Dβ of the equation ∇L	(h)= (q,p), where

(6.20)

∇L	(h)= (∂h0L	, ∂h1L	)(h)

=
(∫ 1

0
xL′(xh0 + h1) dx,

∫ 1

0
L′(xh0 + h1) dx

)
,

is a C1 diffeomorphism from Dβ to R
2 (see [4], Lem. 5.3). If h0 �= 0, an integration by parts

yields

(6.21) ∇L	(h)= 1

h0

(
L(h0 + h1)−L	(h),L(h0 + h1)−L(h1)

)
,

and if h0 = 0, ∇L	(h)= (L′(h1)/2,L′(h1)).
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For any q1 < q2 and p1 < p2 ∈R, [4], Proposition 2.3, gives constants C6,C
′
6 > 0 and N0,

such that for any q ∈ [q1, q2], p ∈ [p1,p2] and N ≥N0, one has

(6.22)
∣∣∣∣[ 1

N
L	N

(
hq,p

N

)− hq,p
N · (q,p)

]
− [

L	

(
h̃

q,p)− h̃
q,p · (q,p)

]∣∣∣∣≤ C6

N
,

and

(6.23)
∥∥h(q,p)

N − h̃
q,p∥∥≤ C′6

N
.

Notice that [4], Proposition 2.3, is only formulated for p = 0 and q ∈ [q1, q2] with q1 > 0, but
all uniformity arguments also hold for p ∈ [p1,p2] and any [q1, q2] ⊂ R. These estimates,
combined with (6.18) and (6.19), give the precise asymptotic of Pβ(	N = (Nq,Np)) (up to
constant factors) uniformly in q ∈ [q1, q2], p ∈ [p1,p2].

Before we start the proof, let us point out that h̃
q,p
0 > 0 for all q,p ∈ R with p ≤ 2q − ε.

Indeed, one notices that h̃
q,p
0 = 0 and (6.20) imply p = 2q . Because h̃ is continuous, it has

constant sign on each sets {p < 2q} and {p > 2q}, and it is already stated in [4], Remark 5.5,
that h̃

q,0
0 > 0 for all q > 0.

Finally we also define the i.i.d. uniform tilt of the increments of X for any |δ|< β/2:

(6.24)
dP̃δ

dPβ,0
(X1)= eδX1−L(δ),

where we defined L in (3.9).

PROOF OF PROPOSITION 4.3. Here is the strategy of the proof: recollecting (6.18),
(6.19) and (6.22), we already have

(6.25) Pβ,0
(
	N = (qN,pN)

)� 1

N2 e−N(h̃q,p·(q,p)−L	(h̃q,p
)),

(recall (0.2) for the definition of �). Hence, the proof will be complete when we show that

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < N |	N = (qN,pN)

)
is bounded from below by some positive constant uniform in q ∈ [q1, q2], p ∈ [p1,p2] and
N ∈N.

For that purpose, we decompose a trajectory X with X0 = 0, XN = pN and area AN(X)=
qN2 into three parts: both ends of length uN := N1/3, and the middle part of length N ′ :=
N − 2uN . To estimate the probability to go under the fixed curve f̃ (k), we study the middle
part under the (nonuniform) tilt PN ′,h, and we handle both ends with uniform tilts P̃δ1 , P̃δ2 .
Then we take advantage of the fact that uniformly tilted walks remain positive (and even
above certain affine curves) with positive probability, and we handle the middle part with
aforementioned estimates.

For i ∈ {1,2}, define

(6.26)
Qi,uN

:=
(
[aiuN/2, biuN/2+ 3K +KS] ∩

(
1

uN

Z

))
× ([

ai(uN − 1)+K +KS,bi(uN − 1)+ 3K +KS

]∩Z
)
,

where ai < bi , i ∈ {1,2} and K are convenient positive constants which will be fixed below.
We constrain the first bit of the walk (until index uN ) to grow by XuN

= x1 and have an area
AuN

= A1, with (A1/uN,x1) ∈ Q1,uN
. Similarly, we reverse the third bit in time (from N

to N − uN ), and we constrain it to grow by XN−uN
− pN = x2 and have an area (AN −

AN−uN
)− pNuN =A2, with (A2/uN,x2) ∈Q2,uN

.
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Therefore we have the decomposition

(6.27)

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < N;	N = (qN,pN)

)
≥ ∑

(A1/uN ,x1)∈Q1,uN
,

(A2/uN ,x2)∈Q2,uN

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

= (A1/uN,x1)
)

× Pβ,0
(
Xk ≥ f̃ (k + uN)− x1,∀0 < k < N ′;	N ′ = (

q ′N ′,p′N ′))
× Pβ,0

(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

= (A2/uN,x2)
)
,

where N ′ :=N − 2uN , and we define (q ′,p′) such that q ′N ′2 = qN2 −A1 −A2 − x1N
′ −

pNuN and p′N ′ = pN +x2−x1. Notice that with our choice of A1,A2 =O(uN
2), x1, x2 =

O(uN), with uN =N1/3, and because q ∈ [q1, q2], p ∈ [p1,p2], then for N sufficiently large
q ′ and p′ are contained in some compact sets [q ′1, q ′2] and [p′1,p′2]. Moreover, we have the
following estimates:

(6.28)
q − q ′ = (

p′ − 4q ′
)uN

N
+ x1

N
+ o(1/N),

p− p′ = −2p′uN

N
+ x1 − x2

N
.

As mentioned above, we tilt uniformly the first and last factors in the right-hand side of
(6.27) with respective parameters δ1, δ2 (which will be explicitly fixed later),

(6.29)

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

= (A1/uN,x1)
)

= e−δ1x1+uNL(δ1)P̃δ1

(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

= (A1/uN,x1)
);

Pβ,0
(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

= (A2/uN,x2)
)

= e−δ2x2+uNL(δ2)P̃δ2

(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

= (A2/uN,x2)
)
.

The second factor in the right-hand side of (6.27) is bounded from below by the following
lemma.

LEMMA 6.1. Fix some ε > 0 and q ′1 < q ′2, p′1 < p′2 in R. Then there are constants
c,C > 0 and N0 ∈ N such that for any N ′ ≥ N0, q ′ ∈ [q ′1, q ′2] and p′ ∈ [p′1,p′2] satisfying
p′ ≤ 2q ′ − ε, one has

(6.30)

Pβ,0
(
Xk ≥ f̃ (k + uN)− x1,∀0 < k < N ′;	N ′ = (

q ′N ′,p′N ′))
≥ e

−N ′hq′,p′
N ′ ·(q ′,p′)+L	

N ′ (h
q′,p′
N ′ )(P

N ′,hq′,p′
N ′

(
	N ′ = (

q ′N ′,p′N ′))−Ce−cuN
)
.

This lemma is proven afterwards. Writing (6.27) with (6.29) and (6.30), we have

(6.31)

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < N;	N = (qN,pN)

)
≥ ∑

(A1/uN ,x1)∈Q1,uN
,

(A2/uN ,x2)∈Q2,uN

e−δ1x1+uNL(δ1)e−δ2x2+uNL(δ2)e
−N ′hq′,p′

N ′ ·(q ′,p′)+L	
N ′ (h

q′,p′
N ′ )

× (
P

N ′,hq′,p′
N ′

(
	N ′ = (

q ′N ′,p′N ′))−Ce−cuN
)

× P̃δ1

(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

= (A1/uN,x1)
)

× P̃δ2

(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

= (A2/uN,x2)
)
.
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Then we divide by Pβ,0(	N = (qN,pN)), which we express with the tilt P
N,hq′,p′

N

(rather

than PN,hq,p
N

), so we have

(6.32)

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < N |	N = (qN,pN)

)
≥ ∑

(A1/uN ,x1)∈Q1,uN
,

(A2/uN ,x2)∈Q2,uN

eg(x1,a1,x2,a2)

(P
N ′,hq′,p′

N ′
(	N ′ = (q ′N ′,p′N ′))−Ce−cuN

P
N,hq′,p′

N

(	N = (qN,pN))

)

× P̃δ1

(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

= (A1/uN,x1)
)

× P̃δ2

(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

= (A2/uN,x2)
)
,

where we define

(6.33)
g(x1, a1, x2, a2) := −δ1x1 + uNL(δ1)− δ2x2 + uNL(δ2)−N ′hq ′,p′

N ′ · (q ′,p′)
+L	N ′

(
hq ′,p′

N ′
)+N hq ′,p′

N · (q,p)−L	N

(
hq ′,p′

N

)
.

Let us handle the factor in parenthesis in (6.32) first. We can apply (6.19) to both probabil-
ities (notice that q − q ′, p− p′ are of order uN/N �N−1/2, recall (6.28)) to bound it from
below by (C7

N2

N ′2 −C8N
2e−cuN )≥ C9 > 0 for N sufficiently large, uniformly in q , p.

Now let us focus on g(x1, a1, x2, a2), where we fix δ1 = h̃
q ′,p′
0 + h̃

q ′,p′
1 and δ2 =−h̃

q ′,p′
1 .

Notice that they match respectively, the value of the exponential tilt applied on the first and
last increments in the second piece of trajectory and in the limit N →∞ (recall (6.16),
and the sign of δ2 is inverted because we reversed in time the third bit of the trajectory). We

introduce in (6.33) a term Nhq ′,p′
N ·(q ′,p′) and we apply (6.22) for (q ′,p′,N ′) and (q ′,p′,N)

to bound from below

(6.34)

g(x1, a1, x2, a2)≥−δ1x1 + uNL(δ1)− δ2x2 + uNL(δ2)

+N hq ′,p′
N · (q − q ′,p− p′

)
−N ′(̃hq ′,p′ · (q ′,p′)−L	

(̃
h

q ′,p′))
+N

(̃
h

q ′,p′ · (q ′,p′)−L	

(̃
h

q ′,p′))−C10,

for some uniform constant C10 <∞. Recall N ′ = N − 2uN , and apply (6.23) to the term

Nhq ′,p′
N · (q − q ′,p− p′) to obtain

(6.35)

g(x1, a1, x2, a2)≥−δ1x1 + uNL(δ1)− δ2x2 + uNL(δ2)

+N h̃
q ′,p′ · (q − q ′,p− p′

)
+ 2uN

(
h̃

q ′,p′ · (q ′,p′)−L	

(
h̃

q ′,p′))−C11.

Recalling that δ1 = h̃
q ′,p′
0 + h̃

q ′,p′
1 and δ2 =−h̃

q ′,p′
1 , and also (6.28), we have

(6.36)

g(x1, a1, x2, a2)≥−(h̃q ′,p′
0 + h̃

q ′,p′
1

)
x1 + h

q ′,p′
1 x2

+ uN

(
2 h̃

q ′,p′ · (q ′,p′)− 2L	

(
h̃

q ′,p′)
+L

(
h̃

q ′,p′
0 + h̃

q ′,p′
1

)+L
(−h̃

q ′,p′
1

))
+ h̃

q ′,p′
0

((
p′ − 4q ′

)
uN + x1

)
+ h̃

q ′,p′
1

(−2p′uN + x1 − x2
)−C12.
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So,

(6.37)
g(x1, a1, x2, a2)≥ uN

(−2h̃
q ′,p′
0 q ′ + h̃

q ′,p′
0 p′ − 2L	

(
h̃

q ′,p′)
+L

(
h̃

q ′,p′
0 + h̃

q ′,p′
1

)+L
(−h̃

q ′,p′
1

))−C12,

and we conclude by recalling the definition of h̃
q ′,p′

and (6.21): the first term is zero, and
g(x1, a1, x2, a2) is bounded from below uniformly by some constant.

Therefore, we can bound (6.32) from below by

(6.38)

Pβ,0
(
Xk ≥ f̃ (k),∀0 < k < N |	N = (qN,pN)

)
≥ C13 × P̃δ1

(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

∈Q1,uN

)
× P̃δ2

(
Xk ≥ f̃ (N − k)− pN,∀0 < k < uN ;	uN

∈Q2,uN

)
,

with δ1 = h̃
q ′,p′
0 + h̃

q ′,p′
1 , δ2 =−h̃

q ′,p′
1 , and C13 is some uniform positive constant. The proof

will be over once we show that those factors are uniformly bounded away from 0. We focus
on the first factor, because we notice in the second one f̃ (N−k)−pN =Nf ( k

N
)−kp+KS ,

which matches f̃ (k) with an inverted slope −p (recall we reversed in time that bit); hence it
is handled by the exact same arguments.

Recall that ∇L	 is a C1 diffeomorphism, in particular h̃ is Lipschitz on compact sets, and
(q − q ′), (p− p′) are of order uN/N =N−2/3 (recall (6.28)), so there exists some constant
C14 > 0 such that for all q ∈ [q1, q2], p ∈ [p1,p2] and N ∈N,

(6.39)
∣∣δ1 − h̃

p,q
0 − h̃

p,q
1

∣∣≤ C14uN

N
.

In particular for N large enough, δ1 is contained in some compact set [δ, δ] ⊂ (−β/2, β/2)

uniformly in q , p. As claimed earlier we have h̃
q,p
0 > 0 under our assumptions—it is even

bounded away from 0—so we also have h̃
q ′,p′
0 > 0 for N large (recall (6.28) again and h̃ is

locally Lipschitz). Combined with (6.21) and with the strict convexity of L, this implies

(6.40) L′
(
h̃

q ′,p′
1

)
< p′ < L′

(
h̃

q ′,p′
0 + h̃

q ′,p′
1

)
.

In particular there is some constant C15 > 0 such that L′(δ1)− p′ ≥ C15 and p′ + L′(δ2) ≥
C15 uniformly in q ∈ [q1, q2], p ∈ [p1,p2] and N ∈N (recall that those functions are contin-

uous, and L′(h̃q ′,p′
1 )=−L′(−h̃

q ′,p′
1 )).

Fix some a,C > 0. For any δ such that |δ| < β/2, and any 0 < t < β/2 + δ, k ∈ N,
Markov’s inequality implies that

(6.41) P̃δ(Xk ≤ ak −C)≤ Ẽδ

[
et(ak−C)−tXk

]= e−Ctek(L̃δ(−t)+at),

where L̃δ(−t) := log Ẽδ[e−tX1] = L(δ− t)−L(δ) for any t ∈ (−β/2+δ,β/2+δ). Choosing
a = 3

4L′(δ1)+ 1
4p′ and writing a Taylor expansion of L, there is some (uniform) c > 0 such

that for t small,

(6.42) L̃δ1(−t)+ at ≤ t

4

(
p′ −L′(δ1)

)+ ct2.

Recall that p′ − L′(δ1) < 0, and it is even bounded away from 0 (uniformly). So for t suf-
ficiently small, we have L̃δ1(−t) + at ≤ t

8(p′ − L′(δ1)). Hence, there exists a t0 > 0 such
that

(6.43)

P̃δ1(∃k ≥ 1,Xk ≤ ak −C)≤∑
k≥1

P̃δ1(Xk ≤ ak −C)

≤ e−Ct0
et0(p

′−L′(δ1))/8

1− et0(p
′−L′(δ1))/8

≤C16e
−Ct0,
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where we bounded the fraction by some constant uniform in (q ′,p′).
Similarly, we have

(6.44) P̃δ(Xk ≥ bk +C)≤ Ẽδ

[
ewXk−w(bk+C)]= e−Cwek(L̃δ(w)−bw),

for some b,C > 0 fixed, and any k ∈N, δ such that |δ|< β/2, and 0 < w < β/2− δ. Because
L̃δ(w) ∼ L′(δ)w as w → 0, we fix some b > sup{L′(δ), δ ∈ [δ, δ]}, and for some w0 > 0
sufficiently small we have

(6.45) P̃δ1(∃k ≥ 1,Xk ≥ bk +C)≤ e−Cw0
eL̃δ1 (w0)−bw0

1− eL̃δ1 (w0)−bw0
≤ C17e

−Cw0,

where we bounded the fraction by some uniform constant (notice that we could pick w0 > 0
such that L̃δ(w0)− bw0 < 0 for all δ ∈ [δ, δ]).

Finally, we estimate the first factor in (6.38) by constraining the trajectory X to have a
first step X1 = 2K + KS , then to remain between the two curves a(k − 1) + K + KS and
b(k − 1)+ 3K +KS , k ≥ 2. Moreover for γ > 0 sufficiently small, we have

(6.46) a − (p+ γ )= 3

4

(
L′(δ1)− p′

)− γ + (
p′ − p

)
> 0,

(recall that p′ − p = O(N−2/3) and L′(δ1) − p′ is uniformly bounded away from 0), and
this γ can be chosen independently of KS . This means that our constraint implies that Xk

remains above f̃ (k) = γ k + kp + KS for all 1 ≤ k ≤ uN . It also implies 	uN
∈Q1,uN

by
setting a1 = a = 3

4L′(δ1) + 1
4p′ and b1 = b in the definition of Q1,uN

. Recollecting (6.43)
and (6.45), we finally obtain

P̃δ1

(
Xk ≥ f̃ (k),∀0 < k < uN ;	uN

∈Q1,uN

)
≥ P̃δ1

(
X1 = 2K +KS;a(k − 1)+K +KS ≤Xk ≤ b(k − 1)+ 3K +KS,∀k ≥ 2

)
(6.47)

= P̃δ1(X1 = 2K +KS)× P̃δ1(ak −K ≤Xk ≤ bk +K,∀k ≥ 1)

≥ P̃δ1(X1 = 2K +KS)× (
1−C18e

−K min(t0,w0)
)≥ C19 > 0.

where we choose K > 0 such that the second factor in (6.47) is greater than 1
2 , then bound

P̃δ1(X1 = 2K +KS) uniformly over δ1 ∈ [δ, δ]. We can reproduce the same proof to handle
the other factor in (6.38), by setting a2 = 3

4L′(δ2)− 1
4p′ and a convenient b2 > a2 in the defi-

nition of Q2,uN
. Therefore, (6.38) is bounded from below by some uniform positive constant,

and this concludes the proof of the proposition (subject to Lemma 6.1). �

Let us now prove Lemma 6.1. This result relies on estimates that are similar to those
displayed at the end of the proof of Proposition 4.3, where we used Markov inequalities
for P̃δ . First we prove an upper bound on the moment generating function of the difference
between the random walk with law PN ′,hq,p

N ′
and the straight line with slope p.

LEMMA 6.2. There exists λ0 > 0 such that for any λ ∈ (0, λ0), there are c > 0 and
N0 ∈N such that

(6.48) EN,hq,p
N

[
e−λ(Xk−pk)]≤ e−ck,

uniformly in 0≤ k ≤N , N ≥N0, q ∈ [q1, q2], p ∈ [p1,p2] satisfying p ≤ 2q − ε.
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PROOF. Under the law PN,hq,p
N

, the increments of the random walk X are still indepen-

dent (but no more identically distributed), so we define hi
N := (1− i/N)h

q,p
N,0 + h

q,p
N,1, the tilt

parameter for the increment Xi −Xi−1, i ≥ 1. Then we have

(6.49)

log EN,hq,p
N

[
e−λ(Xk−pk)]= λpk +

k∑
i=1

(
L
(−λ+ hi

N

)−L
(
hi

N

))

=−λ

k∑
i=1

(L(hi
N)−L(−λ+ hi

N)

λ
− p

)

≤−λ

k∑
i=1

(
L′
(−λ+ hi

N

)− p
)
,

where we used the convexity of L, and the right-hand side is well defined for all |λ|< λ0, for
some λ0 > 0 uniform in (q,p) (recall that hq,p

N is contained in a compact subset of Dβ,n).
Notice that hi

N is affine, decreasing in i (recall that p ≤ 2q − ε implies h̃
q,p
0 > 0), and recall

that L′ is increasing. Therefore it suffices to prove the claim for k =N , that is to prove

(6.50)
1

N

N∑
i=1

L′
(−λ+ hi

N

)− p ≥ c > 0,

and we conclude by noticing that if (un)n≥1 is a decreasing sequence, then ( 1
n

∑n
i=1 ui)n≥1 is

decreasing too, hence the claim holds for k ≤N .
Notice that the first term in the left-hand side of (6.50) is a Riemann sum, and we have

(6.51)
1

N

N∑
i=1

L′
(−λ+ hi

N

) −→
N→∞

∫ 1

0
L′
(
xh̃

q,p
0 + h̃

q,p
1 − λ

)
dx.

We also claim that the convergence holds uniformly in q ∈ [q1, q2], p ∈ [p1,p2]—this fol-
lows from a Riemann-sum approximation of the right-hand side, from (6.23) and from the fact
that L′ is locally Lipschitz. Moreover, we have p = ∫ 1

0 L′(xh̃
q,p
0 + h̃

q,p
1 ) dx (recall (6.20)),

so this concludes the proof of (6.50) for N sufficiently large and some c > 0 uniform in
q ∈ [q1, q2], p ∈ [p1,p2]. �

PROOF OF LEMMA 6.1. Let us bound from above

Pβ,0
(
Xk < f̃ (k + uN)− x1;	N ′ = (

q ′N ′,p′N ′)),
for any 0 < k < N ′, where we recall x1 ∈ [a1(uN − 1)+K +KS,b1(uN − 1)+ 3K +KS],
uN =N1/3, N ′ =N − 2uN and a1 satisfies (6.46) with a = a1. We have

(6.52)
Pβ,0

(
Xk < f̃ (k + uN)− x1;	N ′ = (

q ′N ′,p′N ′))
≤ Pβ,0

(
Xk <−ζuN + pk + γ

(
k ∧ (

N ′ − k
))−K + a1;	N ′ = (

q ′N ′,p′N ′)),
where we define ζ := a1 − p− γ (which is positive and bounded away from 0 uniformly in
p). Recalling (6.15) and applying Markov’s inequality, we have

Pβ,0
(
Xk < f̃ (k + uN)− x1;	N ′ = (

q ′N ′,p′N ′))
≤ e

−N ′hq′,p′
N ′ ·(q ′,p′)+L	

N ′ (h
q′,p′
N ′ )

× P
N ′,hq′,p′

N ′

(
Xk <−ζuN + pk + γ

(
k ∧ (

N ′ − k
))−K + a1;	N ′ = (

q ′N ′,p′N ′))(6.53)

≤ e
−N ′hq′,p′

N ′ ·(q ′,p′)+L	
N ′ (h

q′,p′
N ′ )

× e−λζuN+λγ (k∧(N ′−k))+λ(a1−K)E
N ′,hq′,p′

N ′

[
e−λ(Xk−p′k)]eλ(p−p′)k,
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for some λ ∈ (0, λ0). Applying Lemma 6.2 and the inequality k ∧ (N ′ − k)≤ k, we obtain

(6.54)
Pβ,0

(
Xk < f̃ (k + uN)− x1;	N ′ = (

q ′N ′,p′N ′))
≤ e

−N ′hq′,p′
N ′ ·(q ′,p′)+L	

N ′ (h
q′,p′
N ′ )

e−λζuN+λγ k+λ(a1−K)e−ckeλ(p−p′)k.

Choosing γ < c/λ (independently of KS ), and recalling that p−p′ goes uniformly to 0 (see
(6.28)), there is N0 ∈ N such that λγ − c + λ(p − p′) ≤−C20 < 0 uniformly in (q,p) and
N ≥N0. Therefore, we have

Pβ,0
(
Xk ≥ f̃ (k + uN)− x1,∀0 < k < N ′;	N ′ = (

q ′N ′,p′N ′))
≥ Pβ,0

(
	N ′ = (

q ′N ′,p′N ′))
−

N ′∑
k=1

Pβ,0
(
Xk < f̃ (k + uN)− x1;	N ′ = (

q ′N ′,p′N ′))(6.55)

≥ e
−N ′hq′,p′

N ′ ·(q ′,p′)+L	
N ′ (h

q′,p′
N ′ )

×
(

P
N ′,hq′,p′

N ′

(
	N ′ = (

q ′N ′,p′N ′))− e−λζuN eλ(a1−K)
N ′∑
k=1

e−C20k

)
,

and
∑

k≥1 e−C20k <∞, which concludes the proof. �

APPENDIX A: THE WETTING MODEL

In this appendix, we provide well-known results and estimates on the wetting model which
are proven in [11]. Recall that we defined Pβ in (2.8), and for all N ≥ 1, let

(A.1) Z
β,δ
wet,N := Eβ,0

[
eδ

∑N
k=1 1{Xk=0}1{X∈B

0,+
N }

]
,

be the (constrained) partition function of a wetting model associated with a random walk of
law Pβ . Let hβ(δ) be its free energy—recall (2.9), and notice that it is well defined because

(Z
β,δ
wet,N )N≥1 is super-multiplicative. Note that hβ(δ) is nondecreasing in δ, that hβ(δ) ≤ δ,

and recalling (6.1), we have hβ(0)= 0; hence hβ(δ)≥ 0 for all δ ≥ 0, and we define δ̃c(β) :=
inf{δ ≥ 0, hβ(δ) > 0} ∈ [0,∞].

Let τ := inf{t ≥ 1;Xt ≤ 0} and let Kβ(t) := Pβ,0(τ = t,Xt = 0), t ≥ 1. Notice that con-
ditionally to τ , −Xτ follows a geometric distribution on N0 (in particular τ and Xτ are
independent). Therefore, one has

∑
t≥1 Kβ(t) = Pβ,0(Xτ = 0) = 1 − e−β/2, and Kβ(t) =

Pβ,0(τ = t)(1− e−β/2). It is a straightforward application of [3], (4.5), that there exists c > 0
depending on β only such that

(A.2) Kβ(t)∼ c

t3/2 as t →∞.

PROPOSITION A.1 ([11], Theorem 2.2 and equation 2.2).

(i) For β > 0, the free energy of this wetting model hβ(δ) is the only solution in ζ ≥ 0 of
the equation

(A.3)
∑
t≥1

Kβ(t)e−ζ t = e−δ,

if it exists (i.e., if δ > δ̃c(β)=− log(1− e−β/2)), and 0 otherwise. An explicit expression of
hβ(δ) is given by

(A.4) hβ(δ)= log
(

(eδ − 1)(1− e−β/2)2

1− e−δ − e−β

)
, for δ >− log

(
1− e−β/2),

and 0 otherwise.
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(ii) Recall the definition of c in (A.2). The asymptotics of the partition function are given
by:

(a) if δ > δ̃c(β), then as N →∞,

Z
β,δ
wet,N ∼ Cwete

hβ(δ)N where Cwet :=
(
eδ
∑
t≥1

tKβ(t)e−hβ(δ)t

)−1
,

(b) if δ < δ̃c(β), then as N →∞,

Z
β,δ
wet,N ∼

ce−δ

(e−δ − 1+ e−β/2)2 N−3/2,

(c) if δ = δ̃c(β), then as N →∞,

Z
β,̃δc(β)
wet,N ∼ 1− e−β/2

2πc
N−1/2.

The first claim follows from [11], (2.2), and above observations regarding Kβ . The explicit
formula for hβ(δ) is obtained by computing∑

t≥1

Kβ(t)e−ζ t = (
1− e−β/2)Eβ,0

[
e−ζ τ ]= 1− eae−β/2,

for some a > 0, thanks to a stopping time argument and with the observation that
(e−aXn−ζn)n≥0 is a martingale when a > 0 is the unique solution of Eβ,0[e−aX1−ζ ] = 1;

details are left to the reader. The asymptotics of Z
β,δ
wet,N as N →∞ are given in [11], Theo-

rem 2.2, where we recall (A.2).

APPENDIX B: AN FKG INEQUALITY

We provide here a (conditional) FKG inequality for random walks of length N ∈ N with
increment distributed as Pβ , similarly to more general, already well-known FKG inequalities
as developed in [25]. Define a partial order on Z

N : for all u, v ∈ Z
N , u � v if and only if

uk ≤ vk for all 1 ≤ k ≤ N . A function f : ZN → R is nondecreasing (resp. nonincreasing)
if for all u, v ∈ Z

N , u � v implies f (u) ≤ f (v) (resp. f (u) ≥ f (v)). Define also for every
u, v ∈ Z

N ,

(B.1)
u∧ v := (

min(u1, v1), . . . ,min(uN, vN)
)
,

u∨ v := (
max(u1, v1), . . . ,max(uN, vN)

)
.

PROPOSITION B.1. Let A⊆ Z
N be such that:

• Pβ,0(A) > 0,
• for any u, v ∈A, one has u∧ v ∈A and u∨ v ∈A.

Let f,g : A→ R be two nonincreasing (or two nondecreasing), nonnegative and bounded
functions. Then,

(B.2) Eβ,0
[
f (X)g(X)|X ∈A

]≥ Eβ,0
[
f (X)|X ∈A

]
Eβ,0

[
g(X)|X ∈A

]
.

Note that this claim holds in particular for A= B
0,+
N or A= Z

N .

PROOF. We prove the proposition for f , g both nonincreasing. Let u, v ∈ A. For every
subset B ⊆A, let us define μ1(B) := Pβ,0(B|A), and

μ2(B) := Eβ,0[g(X)1B(X)|X ∈A]
Eβ,0[g(X)|X ∈A] ,
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where we assume without loss of generality that Eβ,0[g(X)|X ∈ A] > 0—otherwise g ≡ 0
on A and the proposition is trivial. Notice that μ1 and μ2 are probability measures on A. To
apply an FKG inequality from [25], we must prove that for any u, v ∈A,

(B.3) μ1(u∨ v)μ2(u∧ v)≥ μ1(u)μ2(v).

To that end we multiply the left-hand side in (B.3) by Eβ,0[g(X)|A] × Pβ,0(A)2, to obtain

(B.4)

Eβ,0
[
g(X)|A]Pβ,0(A)2μ1(u∨ v)μ2(u∧ v)

= g(u∧ v)Pβ,0(X = u∨ v)Pβ,0(X = u∧ v)

= g(u∧ v)c−2N
β

N∏
k=1

e−
β
2 |(uk∨vk)−(uk−1∨vk−1)|

N∏
k=1

e−
β
2 |(uk∧vk)−(uk−1∧vk−1)|,

where u0 = v0 := 0. Moreover, we claim that for any a, b, c, d ∈R,

(B.5) |a ∨ b− c ∨ d| + |a ∧ b− c ∧ d| ≤ |a − c| + |b− d|.
To prove this, observe that |a−c| = a+c−2(a∧c) for any a, c ∈R, hence (B.5) is equivalent
to

a ∧ c+ b ∧ d ≤ (a ∨ b)∧ (c ∨ d)+ (a ∧ b)∧ (c ∧ d).

Notice that (a ∧ b)∧ (c ∧ d)=min{a, b, c, d} is either equal to a ∧ c or b ∧ d . Assume a ∧
b∧c∧d = a∧c without loss of generality. Then one obviously has b∧d ≤ (a∨b)∧ (c∨d),
which concludes the proof of (B.5).

Using (B.5) in (B.4) and recalling that g is nonincreasing, we conclude

Eβ,0
[
g(X)|A]Pβ,0(A)2μ1(u∨ v)μ2(u∧ v)

≥ g(v)c−2N
β

N∏
k=1

e−
β
2 |uk−uk−1|

N∏
k=1

e−
β
2 |vk−vk−1|

≥ Eβ,0
[
g(X)|A]Pβ,0(A)2μ1(u)μ2(v),

which eventually proves (B.3).
Since f is also a nonincreasing function on A, we can use a generalized FKG inequality

claimed in [25], Theorem 3, to obtain

(B.6)
∫
A

f dμ1 ≤
∫
A

f dμ2,

which concludes the proof. �
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